Lipp H P, Schwegler H, Crusio W E, Wolfer D P, Leisinger-Trigona M C, Heimrich B, Driscoll P
Anatomisches Institut Universität Zürich-Irchel, Switzerland.
Experientia. 1989 Sep 15;45(9):845-59. doi: 10.1007/BF01954059.
Genetically-defined rodent strains permit the identification of hippocampal traits which are of functional relevance for the performance of two-way avoidance behavior. This is exemplified here by analyzing the relationship between infrapyramidal mossy fibers (a tiny projection terminating upon the basal dendrites of hippocampal pyramidal neurons) and two-way avoidance learning in about 800 animals. The necessary steps include 1) identification of structural traits sensitive to selective breeding for extremes in two-way avoidance, 2) testing the robustness of the associations found by studying individual and genetical correlations between hippocampal traits and behavior, 3) establishing causal relationships by Mendelian crossing of strains with extreme structural traits and studying the behavioral consequences of such structural 'randomization', 4) confirming causal relationships by manipulating the structural variable in inbred (isogenic) strains, thereby eliminating the possibility of genetic linkage, and 5) ruling out the possibility of spurious associations by studying the correlations between the hippocampal trait and other behaviors known to depend on hippocampal functioning. In comparison with the classical lesion approach for identifying relationships between brain and behavior, the present procedure appears to be superior in two aspects: it is non-invasive, and it focuses automatically on those brain traits which are used by natural selection to shape behaviorally-defined animal populations, i.e., it reveals the natural regulators of behavior.
基因定义的啮齿动物品系有助于识别海马体特征,这些特征与双向回避行为的表现具有功能相关性。本文通过分析约800只动物的锥体下苔藓纤维(一种终止于海马锥体神经元基底树突的微小投射)与双向回避学习之间的关系来举例说明。必要步骤包括:1)识别对双向回避极端情况的选择性育种敏感的结构特征;2)通过研究海马体特征与行为之间的个体和遗传相关性来测试所发现关联的稳健性;3)通过具有极端结构特征的品系的孟德尔杂交建立因果关系,并研究这种结构“随机化”的行为后果;4)通过在近交(同基因)品系中操纵结构变量来确认因果关系,从而消除遗传连锁的可能性;5)通过研究海马体特征与已知依赖海马体功能的其他行为之间的相关性,排除虚假关联的可能性。与用于识别大脑与行为之间关系的经典损伤方法相比,本程序在两个方面似乎更具优势:它是非侵入性的,并且它会自动关注那些通过自然选择来塑造行为定义的动物群体的大脑特征,即它揭示了行为的自然调节因子。