Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.
J Am Chem Soc. 2016 Feb 3;138(4):1344-8. doi: 10.1021/jacs.5b11802. Epub 2016 Jan 21.
The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex Cr(C3S5)3 with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules.
量子计算(QC)的实现将彻底改变从加密到量子模拟等科学领域。电子自旋是量子计算机最小单位——量子比特的一个直观候选者。一种著名的 QC 方案依赖于高自旋磁分子,其中多个 MS 能级之间的跃迁被用作量子比特。然而,在最初的概念提出十多年后,由于难以访问禁戒跃迁,这些高自旋物种中仍然无法在单个能级中利用多个跃迁来实现 QC。为了创建一个概念验证系统,我们合成了具有精确调谐零场分裂参数的新型核自旋自由配合物 Cr(C3S5)3,该参数产生两个可光谱寻址的跃迁,其中一个是禁戒跃迁。脉冲电子顺磁共振(EPR)测量使我们能够研究 S = (3)/2 自旋能级内两个跃迁的相干寿命(T2)和量子控制(拉比振荡),其中一个跃迁是允许的,另一个跃迁是禁戒的。这项研究是开发高自旋物种作为磁性分子中可扩展 QC 系统的途径的重要一步。