Larcan A, Stoltz J F
Service de Réanimation, C.H.R. de Nancy.
J Mal Vasc. 1989;14(3):240-53.
The microcirculation constitutes an ubiquitous vascular network presenting a mesh pattern, and comprising different types of vessels, arterioles, small veins, capillaries, arteriovenous shunts or similar structures, and lymphatics. Many dimensions have to be recognized, or simply mentioned, if one is to understand the hemodynamic and hemorheological particulars of this territory, which differ, in many aspects, from those specific to the macrocirculation (number and length of the vessels, diameter and cross section, intercapillary distance, geometric characteristics, intravascular pressure, pressure gradient, pressure-volume relationship, flow rate, mean velocity of plasma and RBC, velocity profile, local hematocrit, in situ viscosity, kinematic viscosity, wall shearing conditions, local oxygen transport, aggregation and deformability of RBC, leukocyte properties, etc.). The flow rate in capillary tubes and capillary vessels of the living organism varies with many factors, such as proximal hemodynamics, hemorheological characteristics of blood (fibrinogen, macro- and micro-hematocrit), some known effects (Farheus, Farheus Lindqvist), local diameter, the plasma layer which plays the role of the limiting layer, the endothelial film, the wall effect, and so forth. Models of the circulation have been propounded, none of which takes into account the whole of these phenomena due to their great complexity. Hemodynamic and hemorheological interactions provide for a better understanding of certain concepts, such as vascular resistance, hindrance, capacitance, local flow rates, real capillary opening and closing, development of two-directional functional shunts, autoregulation, pressure-volume relationship, critical closing pressure, circulatory current slowing effect, sequelae of intravascular aggregation of formed blood elements.
微循环构成了一个普遍存在的呈网状分布的血管网络,由不同类型的血管组成,包括小动脉、小静脉、毛细血管、动静脉分流或类似结构以及淋巴管。如果要理解该区域的血流动力学和血液流变学特性,就必须认识到或至少提及许多方面,这些特性在许多方面与大循环的特性不同(血管的数量和长度、直径和横截面积、毛细血管间距、几何特征、血管内压力、压力梯度、压力-容积关系、流速、血浆和红细胞的平均速度、速度分布、局部血细胞比容、原位粘度、运动粘度、壁面剪切条件、局部氧气输送、红细胞的聚集和变形性、白细胞特性等)。生物体内毛细血管和微血管中的流速受多种因素影响,如近端血流动力学、血液的血液流变学特性(纤维蛋白原、宏观和微观血细胞比容)、一些已知效应(法赫斯、法赫斯-林德奎斯特效应)、局部直径、起限制层作用的血浆层、内皮膜、壁面效应等等。已经提出了多种循环模型,但由于这些现象极其复杂,没有一个模型能考虑到所有这些现象。血流动力学和血液流变学相互作用有助于更好地理解某些概念,如血管阻力、阻碍、容量、局部流速、真实的毛细血管开放和关闭、双向功能性分流的形成、自动调节、压力-容积关系、临界关闭压力、循环血流减慢效应、血液有形成分在血管内聚集的后遗症。