Department of Physiology, Department of Health Sciences and Technology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea.
Department Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, KU Leuven, Leuven, Belgium.
Rev Physiol Biochem Pharmacol. 2016;170:101-27. doi: 10.1007/112_2015_5004.
The heart works without resting, requiring enormous amounts of energy to continuously pump blood throughout the body. Because of its considerable energy requirements, the heart is vulnerable to oxidative stress caused by the generation of endogenous reactive oxygen species (ROS). Therefore, the heart has effective regulatory and adaptive mechanisms to protect against oxidative stress. Inherited or acquired mitochondrial respiratory chain dysfunction disrupts energy metabolism and causes excessive ROS production and oxidative stress. The physiological cardiac response to oxidative stress can strengthen the heart, but pathological cardiac responses or altered regulatory mechanisms can cause heart disease. Therefore, mitochondria-targeted antioxidants have been tested and some are used clinically. In this review, we briefly discuss the role of mitochondrial DNA mutations, mitochondrial dysfunction, and ROS generation in the development of heart disease and recent developments in mitochondria-targeted antioxidants for the treatment of heart disease.
心脏不停地工作,需要大量的能量来将血液持续泵送到全身。由于其巨大的能量需求,心脏很容易受到内源性活性氧(ROS)产生引起的氧化应激的影响。因此,心脏具有有效的调节和适应机制来抵抗氧化应激。遗传或获得性线粒体呼吸链功能障碍会破坏能量代谢,导致过多的 ROS 产生和氧化应激。心脏对氧化应激的生理反应可以增强心脏,但病理性心脏反应或调节机制的改变会导致心脏病。因此,已经对靶向线粒体的抗氧化剂进行了测试,其中一些已在临床上使用。在这篇综述中,我们简要讨论了线粒体 DNA 突变、线粒体功能障碍和 ROS 生成在心脏病发展中的作用,以及用于治疗心脏病的靶向线粒体抗氧化剂的最新进展。