Department of Chemistry, University of California , Berkeley, California 94720, United States.
Los Alamos National Laboratory , Chemistry Division, Los Alamos, New Mexico 87545, United States.
J Am Chem Soc. 2016 Jan 20;138(2):587-93. doi: 10.1021/jacs.5b10720. Epub 2016 Jan 8.
A recent trend in homogeneous gold catalysis has been the development of oxidative transformations relying on Au(I)/Au(III) redox cycling. Typically, phosphine-supported Au(I) precatalysts are used in the presence of strong oxidants to presumably generate phosphine Au(III) intermediates. Herein, we disclose that such Au(III) complexes can undergo facile C(aryl)-P reductive elimination to afford phosphonium salts, which have been spectroscopically and crystallographically characterized. Mechanistic studies indicate that this process occurs from cationic species at temperatures as low as -20 °C but can be accelerated in the presence of nucleophiles, such as acetonitrile and phosphines, via a five-coordinate intermediate. Importantly, this study highlights that irreversible C(aryl)-P reductive elimination is a feasible decomposition or activation pathway for phosphine-supported Au(III) catalysts and should not be ignored in future reaction development.
近年来,均相金催化的一个发展趋势是依赖于 Au(I)/Au(III)氧化还原循环的氧化转化。通常,在强氧化剂的存在下使用膦配体支持的 Au(I)前催化剂,据推测可以生成膦 Au(III)中间体。在此,我们揭示了这样的 Au(III)配合物可以经历容易的 C(芳基)-P 还原消除,以提供磷翁盐,其已经通过光谱和晶体学进行了表征。机理研究表明,该过程在低至-20°C 的温度下从阳离子物种发生,但可以通过五配位中间体在亲核试剂如乙腈和膦的存在下加速。重要的是,这项研究强调不可逆的 C(芳基)-P 还原消除是膦配体支持的 Au(III)催化剂的可行的分解或激活途径,在未来的反应开发中不应被忽视。