Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Acc Chem Res. 2012 Jun 19;45(6):840-50. doi: 10.1021/ar2001974. Epub 2011 Oct 27.
Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd(II/IV) catalysis has guided the successful development of many reactions. Herein we discuss differences between monometallic Pd(IV) and bimetallic Pd(III) redox catalysis. We address whether appreciation of the relevance of bimetallic Pd(III) redox catalysis is of academic interest exclusively, serving to provide a more nuanced description of catalysis, or if the new insight regarding bimetallic Pd(III) chemistry can be a platform to enable future reaction development. To this end, we describe an example in which the hypothesis of bimetallic redox chemistry guided reaction development, leading to the discovery of reactivity distinct from monometallic catalysts.
多核过渡金属配合物存在于许多金属酶的活性部位中,负责在自然界中实现多种氧化反应。其化学反应的范围在实验室中是无与伦比的。除了少数值得注意的例外,化学家主要专注于单核过渡金属配合物来开发均相催化。我们的研究小组对形成碳杂原子键的反应开发感兴趣,特别关注可以应用于复杂分子合成的反应。在这种情况下,我们假设双金属氧化还原化学,其中两种金属协同参与,可能会降低与催化相关的氧化还原转化的活化能垒。在本报告中,我们讨论了双核 Pd 配合物的氧化还原化学,并研究了双核中间体在 Pd 催化氧化反应中的作用。双核 Pd(II)配合物氧化为双核 Pd(III)配合物的计量有机金属研究以及随后从所得双核 Pd(III)配合物进行 C-X 还原消除证实了双核 Pd(III)配合物介导的 C-X 键形成反应的可行性。同时进行的双核 Pd(II)配合物氧化和金属-金属键形成可以降低氧化的活化能垒。我们还讨论了实验和理论工作,表明在还原消除过程中两种金属的氧化还原协同作用也有利于 C-X 还原消除。将根据配体结构对双核 Pd(III)配合物的结构和反应性的影响来介绍配体修饰对双核 Pd(III)配合物的结构和反应性的影响。从讨论的氧化反应开始,类似的反应被提出是通过单核 Pd(IV)中间体进行的,单核 Pd(II/IV)催化的假设指导了许多反应的成功发展。在此,我们讨论了单核 Pd(IV)和双核 Pd(III)氧化还原催化之间的差异。我们探讨了对双金属 Pd(III)氧化还原催化的相关性的认识仅具有学术意义,还是为催化提供更细致的描述,或者双金属 Pd(III)化学的新见解是否可以作为未来反应开发的平台。为此,我们描述了一个示例,其中双金属氧化还原化学的假设指导了反应的开发,导致发现了与单核催化剂不同的反应性。