Casanova David, Krylov Anna I
Kimika Fakultatea, Euskal Herriko Unibersitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20018 Donostia, Spain.
Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA.
J Chem Phys. 2016 Jan 7;144(1):014102. doi: 10.1063/1.4939222.
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.
提出了一种新方法,用于量化多发色团系统相关波函数中局部激发、电荷共振和多激子构型的贡献。该方法依赖于片段定域轨道并采用自旋相关器。通过使用绝热限制活性空间构型相互作用波函数对氢、乙烯和并四苯分子的模型簇进行计算,说明了该方法的实用性。除了波函数分析外,该方法还为考虑电子关联描述不足的简单状态特定能量校正提供了基础。分解方案还允许计算具有局部激子、电荷共振和多激子特征的非绝热态的能量。这种新方法有助于深入了解多发色团系统的电子结构,并为验证激子模型提供有价值的参考数据。