Doerrier Carolina, García José A, Volt Huayqui, Díaz-Casado María E, Luna-Sánchez Marta, Fernández-Gil Beatriz, Escames Germaine, López Luis C, Acuña-Castroviejo Darío
Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Avenida de Madrid 11, 18012, Granada, Spain.
Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Avenida de Madrid 11, 18012, Granada, Spain; Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Avenida Dr. Olóriz s/n, 18012, Granada, Spain.
Mitochondrion. 2016 Mar;27:56-63. doi: 10.1016/j.mito.2015.12.010. Epub 2015 Dec 31.
Analysis of mitochondrial function is crucial to understand their involvement in a given disease. High-resolution respirometry of permeabilized myocardial fibers in septic mice allows the evaluation of the bioenergetic system, maintaining mitochondrial ultrastructure and intracellular interactions, which are critical for an adequate functionality. OXPHOS and electron transport system (ETS) capacities were assessed using different substrate combinations. Our findings show a severe septic-dependent impairment in OXPHOS and ETS capacities with mitochondrial uncoupling at early and late phases of sepsis. Moreover, sepsis triggers complex III (CIII)-linked alterations in supercomplexes structure, and loss of mitochondrial density. In these conditions, melatonin administration to septic mice prevented sepsis-dependent mitochondrial injury in mitochondrial respiration. Likewise, melatonin improved cytochrome b content and ameliorated the assembly of CIII in supercomplexes. These results support the use of permeabilized fibers to identify properly the respiratory deficits and specific melatonin effects in sepsis.
分析线粒体功能对于理解它们在特定疾病中的作用至关重要。对脓毒症小鼠透化心肌纤维进行高分辨率呼吸测定,可评估生物能量系统,维持线粒体超微结构和细胞内相互作用,这对于充分发挥功能至关重要。使用不同的底物组合评估氧化磷酸化(OXPHOS)和电子传递系统(ETS)能力。我们的研究结果表明,在脓毒症的早期和晚期,OXPHOS和ETS能力存在严重的脓毒症依赖性损伤,并伴有线粒体解偶联。此外,脓毒症会引发超复合物结构中与复合物III(CIII)相关的改变,以及线粒体密度的丧失。在这些情况下,给脓毒症小鼠施用褪黑素可预防脓毒症依赖性线粒体呼吸损伤。同样,褪黑素可提高细胞色素b含量,并改善超复合物中CIII的组装。这些结果支持使用透化纤维来正确识别脓毒症中的呼吸缺陷和褪黑素的特定作用。