Foltz Steven J, Modi Jill N, Melick Garrett A, Abousaud Marin I, Luan Junna, Fortunato Marisa J, Beedle Aaron M
Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America.
PLoS One. 2016 Jan 11;11(1):e0147049. doi: 10.1371/journal.pone.0147049. eCollection 2016.
Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury.
糖基化的α-肌营养不良蛋白聚糖通过肌营养不良蛋白-糖蛋白复合物在细胞外基质蛋白(如层粘连蛋白)和细胞细胞骨架之间提供了至关重要的联系。在继发性肌营养不良蛋白聚糖病性肌营养不良中,糖基化异常会破坏肌肉结构完整性和信号传导所必需的复杂O-甘露糖聚糖。Fktn缺陷型肌营养不良蛋白聚糖病小鼠会发展为中度至重度肌营养不良,伴有骨骼肌发育和/或再生缺陷。为了深入了解糖基化α-肌营养不良蛋白聚糖在这些过程中的作用,我们在年轻(2、4和8周龄)和再生肌肉中进行了肌纤维分型。在骨骼肌特化过程中Fktn基因被破坏的小鼠(Myf5/Fktn基因敲除小鼠)中,新再生的纤维(胚胎肌球蛋白重链阳性)在4周龄时达到峰值,而在胫前肌(TA)和髂腰肌中,总的再生纤维(中央有核)在8周龄时最高,表明在4周龄左右出现了峰值退变/再生活动。相比之下,2、4和8周龄时成熟肌纤维类型的特化相对未变。在坏死毒素诱导损伤14天后,尽管基因缺失后的时间相同,但在Myf5/Fktn基因敲除小鼠(骨骼肌特异性)和发育后用他莫昔芬诱导的全动物基因敲除小鼠(Tam/Fktn基因敲除小鼠)之间,肌纤维类型出现了差异。值得注意的是,Tam/Fktn基因敲除小鼠在损伤后保留了较高水平的胚胎肌球蛋白重链表达,这表明分化程序存在延迟或异常。在损伤后的成熟肌纤维类型特化过程中,1型、2a型和2x型纤维的基因型和毒素参数之间存在显著相互作用,并且在2b型纤维中,Myf5/Fktn和Tam/Fktn研究组之间存在差异。这些数据表明,功能糖基化的α-肌营养不良蛋白聚糖在肌肉再生中具有独特作用,并且可能影响损伤后的纤维类型特化。