Suppr超能文献

肌营养不良蛋白聚糖缺乏症小鼠骨骼肌中线粒体功能障碍对运动和 5-氨基咪唑-4-甲酰胺核糖核苷酸诱导的修复有抗性。

Mitochondrial dysfunction in skeletal muscle of fukutin-deficient mice is resistant to exercise- and 5-aminoimidazole-4-carboxamide ribonucleotide-induced rescue.

机构信息

Department of Kinesiology, University of Georgia, Athens, GA, USA.

Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.

出版信息

Exp Physiol. 2020 Oct;105(10):1767-1777. doi: 10.1113/EP088812. Epub 2020 Sep 10.

Abstract

NEW FINDINGS

What is the central question of this study? Does fukutin deficiency in skeletal muscle cause mitochondrial dysfunction, and if so, can AMP-activated protein kinase (AMPK) stimulation via 5-aminoimidazole-4-carboxamide ribonucleotide attenuate this through regulation of mitochondrial biogenesis and autophagy? What is the main finding and its importance? Mitochondrial dysfunction is associated with fukutin deficiency and AMPK stimulation may benefit muscle contractility to a greater extent than mitochondrial function.

ABSTRACT

Disruptions in the dystrophin-glycoprotein complex (DGC) are clearly the primary basis underlying various forms of muscular dystrophies and dystroglycanopathies, but the cellular consequences of DGC disruption are still being investigated. Mitochondrial abnormalities are becoming an apparent consequence and contributor to dystrophy disease pathology. Herein, we demonstrate that muscle-specific deletion of the fukutin gene (Myf5/fktn-KO mice (Fktn KO)), a model of secondary dystroglycanopathy, results in ∼30% lower muscle strength (P < 0.001) and 16% lower mitochondrial respiratory function (P = 0.002) compared to healthy littermate controls (LM). We also observed ∼80% lower expression of the gene for peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) (P = 0.004), a primary transcription factor for mitochondrial biogenesis, in Fktn KO mice that likely contributes to the mitochondrial defects. PGC-1α is post-translationally regulated via phosphorylation by AMP-activated protein kinase (AMPK). Treatment with the AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) failed to rescue mitochondrial deficits in Fktn KO mice (P = 0.458) but did have beneficial (∼30% greater) effects on recovery of muscle contractility following injury in both LM and Fktn KO mice compared to saline treatment (P = 0.006). The beneficial effects of AMPK stimulation via AICAR on muscle contractile function may be partially explained by AMPK's other role of regulating skeletal muscle autophagy, a cellular process critical for clearance of damaged and/or dysfunctional organelles. Two primary conclusions can be drawn from this data: (1) fukutin deletion produces intrinsic muscular metabolic defects that likely contribute to dystroglycanopathy disease pathology, and (2) AICAR treatment accelerates recovery of muscle contractile function following injury suggesting AMPK signalling as a possible target for therapeutic strategies.

摘要

新发现

本研究的核心问题是什么?骨骼肌中的福ukin 缺乏是否会导致线粒体功能障碍,如果是这样,通过 5-氨基咪唑-4-甲酰胺核苷酸(5-Aminoimidazole-4-carboxamide ribonucleotide,AICAR)刺激 AMP 激活的蛋白激酶(AMP-activated protein kinase,AMPK)能否通过调节线粒体生物发生和自噬来减轻这种功能障碍?主要发现及其重要性是什么?线粒体功能障碍与福ukin 缺乏有关,AMPK 刺激可能比线粒体功能更有益于肌肉收缩力。

摘要

肌营养不良蛋白聚糖复合物(Dystrophin-glycoprotein complex,DGC)的破坏显然是各种形式的肌肉营养不良症和 dystroglycanopathies 的主要基础,但 DGC 破坏的细胞后果仍在研究中。线粒体异常正在成为一种明显的后果,并促成了肌肉疾病的病理。在此,我们证明肌特异性敲除福ukin 基因(Myf5/fktn-KO 小鼠(Fktn KO)),一种继发性 dystroglycanopathy 模型,导致肌肉力量降低约 30%(P<0.001),线粒体呼吸功能降低 16%(P=0.002),与健康同窝对照(LM)相比。我们还观察到 Fktn KO 小鼠中过氧化物酶体增殖物激活受体γ共激活因子 1α(peroxisome proliferator-activated receptor-γ coactivator 1α,PGC-1α)的基因表达降低约 80%(P=0.004),PGC-1α 是线粒体生物发生的主要转录因子,这可能导致了线粒体缺陷。PGC-1α 通过 AMP 激活的蛋白激酶(AMP-activated protein kinase,AMPK)的磷酸化进行翻译后调节。用 AMPK 激动剂 5-氨基咪唑-4-甲酰胺核苷酸(AICAR)治疗未能挽救 Fktn KO 小鼠的线粒体缺陷(P=0.458),但与盐水治疗相比,它对 LM 和 Fktn KO 小鼠损伤后肌肉收缩力的恢复有有益的(增加约 30%)作用(P=0.006)。通过 AICAR 刺激 AMPK 对肌肉收缩功能的有益影响可能部分解释为 AMPK 调节骨骼肌自噬的另一个作用,这是清除受损和/或功能障碍细胞器的关键细胞过程。从这些数据中可以得出两个主要结论:(1)福ukin 缺失产生内在的肌肉代谢缺陷,可能导致 dystroglycanopathy 疾病病理学,(2)AICAR 治疗加速损伤后肌肉收缩功能的恢复,表明 AMPK 信号作为一种可能的治疗策略。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验