Suppr超能文献

作为P300拼写器新特征的功能性脑连接

Functional Brain Connectivity as a New Feature for P300 Speller.

作者信息

Kabbara Aya, Khalil Mohamad, El-Falou Wassim, Eid Hassan, Hassan Mahmoud

机构信息

Department of electrical and computer engineering, ULFG1, Tripoli, Lebanon.

Azm center for research in biotechnology and its applications, EDST, Tripoli, Lebanon.

出版信息

PLoS One. 2016 Jan 11;11(1):e0146282. doi: 10.1371/journal.pone.0146282. eCollection 2016.

Abstract

The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of 'P300 speller'. The proposed approach was compared to the well-known methods proposed in the state of the art of "P300 Speller", mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.

摘要

大脑是一个大规模复杂网络,常被称为“连接组”。认知功能和信息处理主要基于远距离脑区之间的相互作用。然而,脑机接口(BCI)背景下使用的大多数“特征提取”方法都忽略了从不同脑区记录的不同信号之间可能存在的功能关系。本文引入通过锁相值(PLV)量化的功能连接来表征在目标和非目标视觉刺激情况下获得的诱发反应(ERP)。我们还测试了在“P300 拼写器”背景下使用功能连接的可能性。将所提出的方法与“P300 拼写器”现有技术中提出的知名方法进行了比较,主要包括峰值提取、面积、基于时间/频率的特征、xDAWN 空间滤波和逐步线性判别分析(SWLDA)。对从 10 名受试者记录的脑电图(EEG)信号进行了离线分析。结果表明,相位同步为 P300 拼写器中的分类提供了相关信息。在目标试验期间明显观察到脑区之间的高度同步,而在非目标试验中未检测到明显的同步。结果还表明,相位同步在 P300 拼写器中对字母分类提供的性能高于一些现有方法,主要是在有大量试验可用时。最后,我们测试了两种方法(经典特征和相位同步)的可能组合。我们的研究结果表明,在使用峰值提取、面积和基于频率的特征时,P300 拼写器的性能总体上有所提高。在使用大量试验时,与 xDAWN 和 SWLDA 相比获得了相似的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db08/4709183/8beee841c24c/pone.0146282.g001.jpg

相似文献

1
Functional Brain Connectivity as a New Feature for P300 Speller.
PLoS One. 2016 Jan 11;11(1):e0146282. doi: 10.1371/journal.pone.0146282. eCollection 2016.
2
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
J Neural Eng. 2013 Apr;10(2):026001. doi: 10.1088/1741-2560/10/2/026001. Epub 2013 Jan 31.
3
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
4
Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
J Neurosci Methods. 2016 Jan 30;258:104-13. doi: 10.1016/j.jneumeth.2015.11.001. Epub 2015 Nov 10.
5
A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.
J Neural Eng. 2013 Apr;10(2):026012. doi: 10.1088/1741-2560/10/2/026012. Epub 2013 Feb 21.
6
EEG Dataset for RSVP and P300 Speller Brain-Computer Interfaces.
Sci Data. 2022 Jul 8;9(1):388. doi: 10.1038/s41597-022-01509-w.
9
EEG sensor selection by sparse spatial filtering in P300 speller brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5379-82. doi: 10.1109/IEMBS.2010.5626485.
10
Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface.
J Neural Eng. 2015 Apr;12(2):026009. doi: 10.1088/1741-2560/12/2/026009. Epub 2015 Feb 24.

引用本文的文献

1
A survey of brain network analysis by electroencephalographic signals.
Cogn Neurodyn. 2022 Feb;16(1):17-41. doi: 10.1007/s11571-021-09689-8. Epub 2021 Jun 14.
2
Complex networks and deep learning for EEG signal analysis.
Cogn Neurodyn. 2021 Jun;15(3):369-388. doi: 10.1007/s11571-020-09626-1. Epub 2020 Aug 29.
3
Novel hybrid brain-computer interface system based on motor imagery and P300.
Cogn Neurodyn. 2020 Apr;14(2):253-265. doi: 10.1007/s11571-019-09560-x. Epub 2019 Oct 21.
4
Network Brain-Computer Interface (nBCI): An Alternative Approach for Cognitive Prosthetics.
Front Neurosci. 2018 Nov 1;12:790. doi: 10.3389/fnins.2018.00790. eCollection 2018.

本文引用的文献

1
Dynamic reorganization of functional brain networks during picture naming.
Cortex. 2015 Dec;73:276-88. doi: 10.1016/j.cortex.2015.08.019. Epub 2015 Sep 28.
2
A new algorithm for spatiotemporal analysis of brain functional connectivity.
J Neurosci Methods. 2015 Mar 15;242:77-81. doi: 10.1016/j.jneumeth.2015.01.002. Epub 2015 Jan 10.
3
The hubs of the human connectome are generally implicated in the anatomy of brain disorders.
Brain. 2014 Aug;137(Pt 8):2382-95. doi: 10.1093/brain/awu132. Epub 2014 Jun 19.
4
Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.
Front Neurol. 2014 May 15;5:74. doi: 10.3389/fneur.2014.00074. eCollection 2014.
5
Functional imaging of seizures and epilepsy: evolution from zones to networks.
Curr Opin Neurol. 2012 Apr;25(2):194-200. doi: 10.1097/WCO.0b013e3283515db9.
6
Phase-based features for motor imagery brain-computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2578-81. doi: 10.1109/IEMBS.2011.6090712.
7
Large-scale brain networks in cognition: emerging methods and principles.
Trends Cogn Sci. 2010 Jun;14(6):277-90. doi: 10.1016/j.tics.2010.04.004. Epub 2010 May 20.
8
xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
IEEE Trans Biomed Eng. 2009 Aug;56(8):2035-43. doi: 10.1109/TBME.2009.2012869. Epub 2009 Jan 23.
10
Robustly estimating the flow direction of information in complex physical systems.
Phys Rev Lett. 2008 Jun 13;100(23):234101. doi: 10.1103/PhysRevLett.100.234101. Epub 2008 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验