Suppr超能文献

iMiRNA-SSF:通过结合不同分布的负集改进微小RNA前体的识别

iMiRNA-SSF: Improving the Identification of MicroRNA Precursors by Combining Negative Sets with Different Distributions.

作者信息

Chen Junjie, Wang Xiaolong, Liu Bin

机构信息

School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.

Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.

出版信息

Sci Rep. 2016 Jan 12;6:19062. doi: 10.1038/srep19062.

Abstract

The identification of microRNA precursors (pre-miRNAs) helps in understanding regulator in biological processes. The performance of computational predictors depends on their training sets, in which the negative sets play an important role. In this regard, we investigated the influence of benchmark datasets on the predictive performance of computational predictors in the field of miRNA identification, and found that the negative samples have significant impact on the predictive results of various methods. We constructed a new benchmark set with different data distributions of negative samples. Trained with this high quality benchmark dataset, a new computational predictor called iMiRNA-SSF was proposed, which employed various features extracted from RNA sequences. Experimental results showed that iMiRNA-SSF outperforms three state-of-the-art computational methods. For practical applications, a web-server of iMiRNA-SSF was established at the website http://bioinformatics.hitsz.edu.cn/iMiRNA-SSF/.

摘要

微小RNA前体(pre-miRNA)的识别有助于理解生物过程中的调控机制。计算预测器的性能取决于其训练集,其中负样本起着重要作用。在这方面,我们研究了基准数据集对miRNA识别领域计算预测器预测性能的影响,发现负样本对各种方法的预测结果有显著影响。我们构建了一个具有不同负样本数据分布的新基准集。使用这个高质量的基准数据集进行训练,提出了一种新的计算预测器iMiRNA-SSF,它采用了从RNA序列中提取的各种特征。实验结果表明,iMiRNA-SSF优于三种最先进的计算方法。为了实际应用,在网站http://bioinformatics.hitsz.edu.cn/iMiRNA-SSF/上建立了iMiRNA-SSF的网络服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4093/4709562/2dc5141c162e/srep19062-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验