Wang Zhijie, Cao Dawei, Wen Liaoyong, Xu Rui, Obergfell Manuel, Mi Yan, Zhan Zhibing, Nasori Nasori, Demsar Jure, Lei Yong
Institut für Physik &IMN MacroNano (ZIK), Technische Universität Ilmenau, 98693 Ilmenau, Germany.
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, CAS, 100083 Beijing, China.
Nat Commun. 2016 Jan 12;7:10348. doi: 10.1038/ncomms10348.
Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting.
利用等离子体纳米结构将太阳能高效灵活地转化为电能或燃料,为光伏和光电化学研究带来了新的范例。在由与半导体接触的等离子体结构组成的传统光电化学电池中,光电化学反应的类型由半导体/电解质界面处的能带弯曲决定。因此,反应的性质很难调节。在这里,我们没有使用半导体,而是采用了铁电材料Pb(Zr,Ti)O3(PZT)。通过在ITO衬底上沉积金纳米颗粒阵列和PZT薄膜,并研究不同配置下的光电流以及飞秒瞬态吸收,我们证明了纳米颗粒阵列与PZT之间有效的电荷转移。最重要的是,我们表明,当改变PZT中的铁电极化时,光电流可以调节近一个数量级,这证明了该系统在能量收集方面具有通用性和可调性。