Hadia N M A, Khalafalla Mohammed A H, Abdel Salam Fatma M, Ahmed Ashour M, Shaban Mohamed, Almuqrin Aljawhara H, Hajjiah Ali, Hanafi H A, Alruqi Mansoor, Mourad Abdel-Hamid I, Rabia Mohamed
Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Al-Jouf, Saudi Arabia.
Basic Sciences Research Unit, Jouf University, Sakaka P.O. Box 2014, Al-Jouf, Saudi Arabia.
Polymers (Basel). 2022 May 25;14(11):2148. doi: 10.3390/polym14112148.
This study is very promising for providing a renewable enrgy (H gas fuel) under the elctrochemical splitting of the wastwater (sewage water). This study has double benefits: hydrogen generation and contaminations removel. This study is carried out on sewage water, third stage treated, from Beni-Suef city, Egypt. Antimony tin oxide (ATO)/polyaniline (PANI)/PbI photoelectrode is prepared through the in situ oxidative polymerization of PANI on ATO, then PANI is used as an assistant for PbI deposition using the ionic adsorption deposition method. The chemical structural, morphological, electrical, and optical properties of the composite are confirmed using different analytical tools such as X-ray diffreaction (XRD), scanning electron microscope (SEM), transmision electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. The prepared PbI inside the composite has a crystal size of 33 nm (according to the peak at 12.8°) through the XRD analyses device. SEM and TEM confirm the hexagonal PbI sheets embedded on the PANI nanopores surface. Moreover, the bandgap values are enhanced very much after the composite formation, in which the bandgap values for PANI and PANI/PbI are 3 and 2.51 eV, respectively. The application of ATO/PANI/PbI nanocomposite electrode for sewage splitting and H generation is carried out through a three-electrode cell. The measurements carreid out using the electrocehical worksattion under th Xenon lamp (100 mW.cm). The produced current density (J) is 0.095 mA.cm at 100 mW.cm light illumination. The photoelectrode has high reproducibility and stability, in which and the number of H moles is 6 µmole.h.cm. The photoelectrode response to different monochromatic light, in which the produced J decreases from 0.077 to 0.072 mA.cm with decreasing of the wavelengths from 390 to 636 nm, respectively. These values confirms the high response of the ATO/PANI/PbI nanocomposite electrode for the light illuminaton and hydrogen genration under broad light region. The thermodynamic parameters: activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) values are 7.33 kJ/mol, -4.7 kJ/mol, and 203.3 J/mol.K, respectively. The small values of ΔS* relted to the high sesnivity of the prepared elctrode for the water splitting and then the hydrogen gneration. Finally, a theoretical study was mentioned for calculation geometry, electrochemical, and thermochemistry properties of the polyaniline/PbI nanocomposite as compared with that for the polyaniline.
这项研究对于在废水(污水)的电化学分解过程中提供可再生能源(氢气燃料)而言非常有前景。该研究有双重益处:制氢和去除污染物。本研究是针对埃及贝尼苏韦夫市经过三级处理的污水开展的。通过在锑锡氧化物(ATO)上原位氧化聚合聚苯胺(PANI)制备了锑锡氧化物(ATO)/聚苯胺(PANI)/碘化铅(PbI)光电极,然后使用离子吸附沉积法将聚苯胺用作碘化铅沉积的助剂。使用不同的分析工具,如X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)和紫外可见光谱,对该复合材料的化学结构、形态、电学和光学性质进行了确认。通过XRD分析装置可知,复合材料内部制备的碘化铅晶体尺寸为33纳米(根据12.8°处的峰)。扫描电子显微镜和透射电子显微镜证实了六边形的碘化铅片嵌入在聚苯胺纳米孔表面。此外,复合材料形成后带隙值大幅提高,其中聚苯胺和聚苯胺/碘化铅的带隙值分别为3和2.51电子伏特。通过三电极电池对ATO/PANI/PbI纳米复合电极用于污水分解和制氢进行了研究。使用电化学工作站在氙灯(100毫瓦·平方厘米)下进行测量。在100毫瓦·平方厘米的光照下,产生的电流密度(J)为0.095毫安·平方厘米。该光电极具有高重现性和稳定性,其中氢气的摩尔数为6微摩尔·小时·平方厘米。该光电极对不同单色光有响应,其中随着波长从390纳米减小到636纳米,产生的电流密度J从0.077毫安·平方厘米降至0.072毫安·平方厘米。这些值证实了ATO/PANI/PbI纳米复合电极在宽光谱区域对光照和制氢具有高响应性。热力学参数:活化能(Ea)、焓(ΔH*)和熵(ΔS*)值分别为7.33千焦/摩尔、 - 4.7千焦/摩尔和203.3焦/摩尔·开尔文。ΔS*的小值与制备的电极对水分解进而制氢的高灵敏度相关。最后,提到了一项理论研究,用于计算聚苯胺/碘化铅纳米复合材料与聚苯胺相比的几何结构、电化学和热化学性质。