Sverdlov Aaron L, Elezaby Aly, Qin Fuzhong, Behring Jessica B, Luptak Ivan, Calamaras Timothy D, Siwik Deborah A, Miller Edward J, Liesa Marc, Shirihai Orian S, Pimentel David R, Cohen Richard A, Bachschmid Markus M, Colucci Wilson S
Myocardial Biology Unit, Boston University School of Medicine, Boston, MA (A.L.S., A.E., F.Q., I.L., T.D.C., D.A.S., E.J.M., D.R.P., W.S.C.).
Vascular Biology Section, Boston University School of Medicine, Boston, MA (J.B.B., R.A.C., M.M.B.).
J Am Heart Assoc. 2016 Jan 11;5(1):e002555. doi: 10.1161/JAHA.115.002555.
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD.
Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium.
Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103.
线粒体活性氧(ROS)与代谢性心脏病(MHD)相关。然而,ROS导致MHD的机制尚不清楚。我们检验了线粒体ROS是MHD关键介质的假说。
喂食高脂高糖(HFHS)饮食的小鼠会发生MHD,伴有心脏舒张功能和线粒体功能障碍,这与心脏线粒体蛋白的氧化翻译后修饰有关。将线粒体中表达过氧化氢酶的转基因小鼠和野生型小鼠喂食HFHS或对照饮食4个月。喂食HFHS的野生型小鼠的心脏线粒体产生H2O2的速率高3倍(与喂食对照饮食相比,P = 0.001),复合物II底物驱动的氧消耗降低30%(P = 0.006),复合物I和II底物驱动的ATP合成降低21%至23%(P = 0.01),复合物II活性降低62%(P = 0.002)。在中线粒体表达过氧化氢酶的转基因小鼠中,所有HFHS饮食诱导的线粒体异常均得到改善,左心室肥厚和舒张功能障碍也得到改善。在喂食HFHS的野生型小鼠中,二硫苏糖醇(5 mmol/L)可在体外恢复复合物II底物驱动的ATP合成和活性,提示可逆性半胱氨酸氧化翻译后修饰起作用。体外将复合物II亚基B的Cys100或Cys103定点突变为对氧化还原不敏感的丝氨酸,可防止培养基中ROS或高葡萄糖/高棕榈酸诱导的复合物II功能障碍。
线粒体ROS在MHD中具有致病性,至少部分通过引起复合物I和II蛋白的氧化翻译后修饰,包括复合物II亚基B的Cys100和Cys103的可逆性氧化翻译后修饰,导致线粒体功能障碍。