From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (M.S., G.G., G.W.D.); National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (E.M.); and Department of Pathology, University of Washington, Seattle (P.S.R.).
Circ Res. 2014 Jul 18;115(3):348-53. doi: 10.1161/CIRCRESAHA.115.304384. Epub 2014 May 29.
Mitochondrial reactive oxygen species (ROS) are implicated in aging, chronic degenerative neurological syndromes, and myopathies. On the basis of free radical hypothesis, dietary, pharmacological, and genetic ROS suppression has been tested to minimize tissue damage, with remarkable therapeutic efficacy. The effects of mitochondrial-specific ROS suppression in primary mitophagic dysfunction are unknown.
An in vivo dose-ranging analysis of ROS suppression in an experimental cardiomyopathy provoked by defective mitochondrial clearance.
Mice lacking mitofusin 2 (Mfn2) in hearts have impaired parkin-mediated mitophagy leading to accumulation of damaged ROS-producing organelles and progressive heart failure. As expected, cardiomyocyte-directed expression of mitochondrial-targeted catalase at modest levels normalized mitochondrial ROS production and prevented mitochondrial depolarization, respiratory impairment, and structural degeneration in Mfn2 null hearts. In contrast, catalase expression at higher levels that supersuppressed mitochondrial ROS failed to improve either mitochondrial fitness or cardiomyopathy, revealing that ROS toxicity is not the primary mechanism for cardiac degeneration. Lack of benefit from supersuppressing ROS was associated with failure to invoke secondary autophagic pathways of mitochondrial quality control, revealing a role for ROS signaling in mitochondrial clearance. Mitochondrial permeability transition pore function was normal, and genetic inhibition of mitochondrial permeability transition pore function did not alter mitochondrial or cardiac degeneration, in Mfn2 null hearts.
Local mitochondrial ROS (1) contribute to mitochondrial degeneration and (2) activate mitochondrial quality control mechanisms. A therapeutic window for mitochondrial ROS suppression should minimize the former while retaining the latter, which we achieved by expressing lower levels of catalase.
线粒体活性氧(ROS)与衰老、慢性进行性神经综合征和肌病有关。基于自由基假说,已经测试了饮食、药理学和遗传 ROS 抑制作用,以最大程度地减少组织损伤,取得了显著的治疗效果。线粒体特异性 ROS 抑制在原发性线粒体自噬功能障碍中的作用尚不清楚。
在由线粒体清除缺陷引起的实验性心肌病中,进行 ROS 抑制的体内剂量范围分析。
心脏中缺乏融合蛋白 2(Mfn2)的小鼠,其 parkin 介导的线粒体自噬受损,导致受损的 ROS 产生细胞器积累和进行性心力衰竭。正如预期的那样,在适度水平下,心肌细胞靶向表达的线粒体靶向过氧化氢酶可使线粒体 ROS 产生正常化,并防止 Mfn2 缺失心脏中的线粒体去极化、呼吸功能障碍和结构退化。相比之下,高水平表达过氧化氢酶以超抑制线粒体 ROS 的方式未能改善线粒体适应性或心肌病,表明 ROS 毒性不是心脏退化的主要机制。未能从超抑制 ROS 中获益与未能引发线粒体质量控制的次级自噬途径有关,这表明 ROS 信号在线粒体清除中起作用。线粒体通透性转换孔功能正常,并且在 Mfn2 缺失的心脏中,遗传抑制线粒体通透性转换孔功能不会改变线粒体或心脏退化。
局部线粒体 ROS(1)有助于线粒体退化和(2)激活线粒体质量控制机制。线粒体 ROS 抑制的治疗窗口应最大限度地减少前者,同时保留后者,我们通过表达较低水平的过氧化氢酶来实现这一目标。