Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
Department of Biology and Graduate School Biological Science, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2262-6. doi: 10.1002/anie.201503183. Epub 2016 Jan 12.
Protein glycosylation is a ubiquitous post-translational modification that is involved in the regulation of many aspects of protein function. In order to uncover the biological roles of this modification, imaging the glycosylation state of specific proteins within living cells would be of fundamental importance. To date, however, this has not been achieved. Herein, we demonstrate protein-specific detection of the glycosylation of the intracellular proteins OGT, Foxo1, p53, and Akt1 in living cells. Our generally applicable approach relies on Diels-Alder chemistry to fluorescently label intracellular carbohydrates through metabolic engineering. The target proteins are tagged with enhanced green fluorescent protein (EGFP). Förster resonance energy transfer (FRET) between the EGFP and the glycan-anchored fluorophore is detected with high contrast even in presence of a large excess of acceptor fluorophores by fluorescence lifetime imaging microscopy (FLIM).
蛋白质糖基化是一种普遍存在的翻译后修饰,参与调节蛋白质功能的许多方面。为了揭示这种修饰的生物学作用,在活细胞内对特定蛋白质的糖基化状态进行成像将是至关重要的。然而,迄今为止,这尚未实现。本文中,我们证明了在活细胞内对 OGT、Foxo1、p53 和 Akt1 等细胞内蛋白质的糖基化进行特异性检测。我们的通用方法依赖于 Diels-Alder 化学,通过代谢工程使细胞内碳水化合物进行荧光标记。目标蛋白通过增强型绿色荧光蛋白(EGFP)进行标记。通过荧光寿命成像显微镜(FLIM),即使在存在大量荧光团供体的情况下,EGFP 和糖基化连接荧光团之间的Förster 共振能量转移(FRET)也能以高对比度进行检测。