Stamatakis Alice M, Van Swieten Maaike, Basiri Marcus L, Blair Grace A, Kantak Pranish, Stuber Garret D
Departments of Psychiatry and Cell Biology and Physiology, Curriculum in Neurobiology, and.
Departments of Psychiatry and Cell Biology and Physiology, Master program Neuroscience and Cognition, Brain Center Rudolf Magnus, Department of Transitional Neuroscience, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
J Neurosci. 2016 Jan 13;36(2):302-11. doi: 10.1523/JNEUROSCI.1202-15.2016.
The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions.
In this study, we show that the genetic ablation of LHA glutamatergic neurons enhances caloric intake. Some of these LHA glutamatergic neurons project to the lateral habenula, a brain area important for generating behavioral avoidance. Optogenetic stimulation of this circuit has net excitatory effects on postsynaptic LHb neurons. This is the first study to characterize the functional connectivity and behavioral relevance of this circuit within the context of feeding and reward-related behavior.
高热量、美味食物的过度消费被认为是全球肥胖流行的主要原因之一;然而,直接调节享乐性进食的精确神经回路仍然难以捉摸。在这里,我们表明下丘脑外侧区(LHA)的谷氨酸能神经元及其向外侧缰核(LHb)的投射对美味食物的消费具有负调节作用。对LHA谷氨酸能神经元进行基因消融会增加可获取高脂饮食的小鼠的每日热量摄入并导致体重增加,同时不改变其一般运动活动。LHA前部的谷氨酸能神经元向LHb发送功能性谷氨酸能投射,LHb是一个参与处理厌恶刺激和负面奖励预测结果的脑区。对谷氨酸能LHA-LHb回路进行通路特异性光遗传学刺激可导致可检测到的谷氨酸介导的兴奋性突触后电流以及GABA介导的抑制性突触后电流,尽管神经递质释放的净效应是增加大多数LHb神经元的放电。对LHA-LHb谷氨酸能纤维进行体内光遗传学抑制会产生实时位置偏好,而对LHA-LHb谷氨酸能纤维进行光遗传学刺激则产生相反的效果。此外,对LHA-LHb谷氨酸能纤维进行光遗传学抑制会急性增加美味液体热量奖励的消费。总体而言,这些结果表明,LHA谷氨酸能神经元通过其与LHb以及潜在的其他脑区的功能性回路连接,能够双向调节进食以及潜在的其他行为状态。
在本研究中,我们表明对LHA谷氨酸能神经元进行基因消融会增加热量摄入。这些LHA谷氨酸能神经元中的一些投射到外侧缰核,外侧缰核是一个对产生行为回避很重要的脑区。对该回路进行光遗传学刺激对突触后LHb神经元具有净兴奋作用。这是第一项在进食和奖励相关行为的背景下描述该回路的功能连接性和行为相关性的研究。