Suppr超能文献

对食物的感官检测会迅速调节弓状核进食回路。

Sensory detection of food rapidly modulates arcuate feeding circuits.

作者信息

Chen Yiming, Lin Yen-Chu, Kuo Tzu-Wei, Knight Zachary A

机构信息

Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Cell. 2015 Feb 26;160(5):829-841. doi: 10.1016/j.cell.2015.01.033. Epub 2015 Feb 19.

Abstract

Hunger is controlled by specialized neural circuits that translate homeostatic needs into motivated behaviors. These circuits are under chronic control by circulating signals of nutritional state, but their rapid dynamics on the timescale of behavior remain unknown. Here, we report optical recording of the natural activity of two key cell types that control food intake, AgRP and POMC neurons, in awake behaving mice. We find unexpectedly that the sensory detection of food is sufficient to rapidly reverse the activation state of these neurons induced by energy deficit. This rapid regulation is cell-type specific, modulated by food palatability and nutritional state, and occurs before any food is consumed. These data reveal that AgRP and POMC neurons receive real-time information about the availability of food in the external world, suggesting a primary role for these neurons in controlling appetitive behaviors such as foraging that promote the discovery of food.

摘要

饥饿由专门的神经回路控制,这些神经回路将体内平衡需求转化为有动机的行为。这些回路受到营养状态循环信号的长期控制,但其在行为时间尺度上的快速动态变化仍不清楚。在这里,我们报告了在清醒行为小鼠中对两种控制食物摄入的关键细胞类型(AgRP和POMC神经元)的自然活动进行光学记录。我们意外地发现,食物的感官检测足以迅速逆转由能量不足引起的这些神经元的激活状态。这种快速调节具有细胞类型特异性,受食物适口性和营养状态调节,并且在任何食物被消耗之前就会发生。这些数据表明,AgRP和POMC神经元接收有关外部世界食物可用性的实时信息,这表明这些神经元在控制诸如觅食等促进食物发现的食欲行为中起主要作用。

相似文献

1
Sensory detection of food rapidly modulates arcuate feeding circuits.
Cell. 2015 Feb 26;160(5):829-841. doi: 10.1016/j.cell.2015.01.033. Epub 2015 Feb 19.
2
Making sense of the sensory regulation of hunger neurons.
Bioessays. 2016 Apr;38(4):316-24. doi: 10.1002/bies.201500167. Epub 2016 Feb 22.
4
Deconstruction of a neural circuit for hunger.
Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270.
6
AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
Nat Neurosci. 2011 Mar;14(3):351-5. doi: 10.1038/nn.2739. Epub 2010 Jan 5.
7
The hypothalamic arcuate nucleus and the control of peripheral substrates.
Best Pract Res Clin Endocrinol Metab. 2014 Oct;28(5):725-37. doi: 10.1016/j.beem.2014.03.003. Epub 2014 Apr 4.
8
Hypothalamic Neurons that Regulate Feeding Can Influence Sleep/Wake States Based on Homeostatic Need.
Curr Biol. 2018 Dec 3;28(23):3736-3747.e3. doi: 10.1016/j.cub.2018.09.055. Epub 2018 Nov 21.
9
Hypothalamic control of interoceptive hunger.
Curr Biol. 2021 Sep 13;31(17):3797-3809.e5. doi: 10.1016/j.cub.2021.06.048. Epub 2021 Jul 16.

引用本文的文献

2
AgRP neuron activity enhances reward-related consummatory behaviors during energy deficit in mice.
Commun Biol. 2025 Aug 4;8(1):1152. doi: 10.1038/s42003-025-08620-9.
3
A hypothalamic circuit that modulates feeding and parenting behaviours.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09268-5.
4
Regulation of Feeding Behavior and Body Weight by Orexigenic Neurons in the Arcuate Nucleus.
J Obes Metab Syndr. 2025 Jul 30;34(3):213-223. doi: 10.7570/jomes25059. Epub 2025 Jul 25.
5
To eat or not to eat: A role for ghrelin and LEAP2 in eating disorders?
Neurosci Appl. 2024 Feb 27;3:104045. doi: 10.1016/j.nsa.2024.104045. eCollection 2024.
6
Motilin stimulates food intake linked to gastric motility in : Simultaneous recordings of food intake and gastric motility in the conscious state.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2424363122. doi: 10.1073/pnas.2424363122. Epub 2025 Jul 8.
7
Hypothalamic neuronal-glial crosstalk in metabolic disease.
NPJ Metab Health Dis. 2024 Oct 4;2(1):27. doi: 10.1038/s44324-024-00026-1.
9
Sexual dimorphism in the development and function of the melanocortin system.
Rev Endocr Metab Disord. 2025 Jun 24. doi: 10.1007/s11154-025-09983-4.

本文引用的文献

1
20 years of leptin: leptin at 20: an overview.
J Endocrinol. 2014 Oct;223(1):T1-8. doi: 10.1530/JOE-14-0405. Epub 2014 Aug 13.
2
Natural neural projection dynamics underlying social behavior.
Cell. 2014 Jun 19;157(7):1535-51. doi: 10.1016/j.cell.2014.05.017.
3
An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.
Nature. 2014 Mar 13;507(7491):238-42. doi: 10.1038/nature12956. Epub 2014 Feb 2.
4
Parallel, redundant circuit organization for homeostatic control of feeding behavior.
Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002.
6
Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance.
Cell. 2013 Sep 26;155(1):172-87. doi: 10.1016/j.cell.2013.09.003.
7
Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.
8
Long-term dynamics of CA1 hippocampal place codes.
Nat Neurosci. 2013 Mar;16(3):264-6. doi: 10.1038/nn.3329. Epub 2013 Feb 10.
9
Concurrent activation of striatal direct and indirect pathways during action initiation.
Nature. 2013 Feb 14;494(7436):238-42. doi: 10.1038/nature11846. Epub 2013 Jan 23.
10
From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior.
Nat Neurosci. 2012 Oct;15(10):1350-5. doi: 10.1038/nn.3217. Epub 2012 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验