Olivas Antoinette, Gardner Ryan T, Wang Lianguo, Ripplinger Crystal M, Woodward William R, Habecker Beth A
Department of Physiology and Pharmacology and.
Department of Physiology and Pharmacology and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, and.
J Neurosci. 2016 Jan 13;36(2):479-88. doi: 10.1523/JNEUROSCI.3556-15.2016.
Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
心脏的交感神经和副交感神经控制是去甲肾上腺素(NE)和乙酰胆碱(ACh)引发相反作用的经典例子。交感神经的NE通过激活β受体增加心率和心肌收缩力,而副交感神经的ACh通过毒蕈碱受体使心脏减慢。交感神经元可经历从产生NE到ACh的发育转变,我们提供证据表明小鼠心脏交感神经在心肌梗死(MI)后短暂产生ACh。MI后10 - 14天,存活心脏组织中的ACh水平升高,在21天时恢复到对照水平,而NE水平保持稳定。与此同时,ACh合成所需的基因在星状神经节中增加,星状神经节包含大部分投射到心脏的交感神经元。MI后14天的免疫组织化学显示星状交感神经元中有胆碱乙酰转移酶(ChAT),酪氨酸羟化酶阳性的心脏交感神经纤维中有囊泡ACh转运体免疫反应性。最后,从成年交感神经元中选择性删除ChAT基因可防止梗死诱导的心脏ACh增加。从交感神经元中删除gp130细胞因子受体可防止MI后胆碱能基因的诱导,表明炎性细胞因子诱导心脏交感神经元短暂获得胆碱能表型。体外实验检测NE和ACh对兔心脏动作电位时程的影响,结果显示ACh减弱了NE刺激引起的心脏动作电位时程缩短以及心肌细胞钙瞬变增加。这增加了一种可能性,即ACh和NE的交感神经共同释放可能损害对高心率的适应并增加心律失常易感性。
交感神经元通常产生去甲肾上腺素(NE),可增加心率和心肌细胞的收缩力。我们发现,心肌梗死后,支配心脏的交感神经元开始产生乙酰胆碱(ACh),可减慢心率并降低收缩力。多条证据证实ACh的来源是交感神经,而非心脏中正常情况下ACh的来源副交感神经。在离体心脏上整体应用NE加或不加ACh显示,ACh部分逆转了NE刺激引起的心脏动作电位时程缩短以及心肌细胞钙瞬变增加。这表明ACh和NE的交感神经共同释放可能损害对高心率的适应并增加心律失常易感性。