Saw Eng Leng, Pearson James T, Schwenke Daryl O, Munasinghe Pujika Emani, Tsuchimochi Hirotsugu, Rawal Shruti, Coffey Sean, Davis Philip, Bunton Richard, Van Hout Isabelle, Kai Yuko, Williams Michael J A, Kakinuma Yoshihiko, Fronius Martin, Katare Rajesh
Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
Cardiovasc Diabetol. 2021 Feb 22;20(1):50. doi: 10.1186/s12933-021-01231-8.
Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (MAChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart.
Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and MAChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways.
Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A.
We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.
乙酰胆碱(ACh)在心脏功能中起着至关重要的作用。最近的证据表明,心肌细胞拥有一个非神经元胆碱能系统(NNCS),该系统由胆碱乙酰转移酶(ChAT)、胆碱转运体1(CHT1)、囊泡乙酰胆碱转运体(VAChT)、乙酰胆碱酯酶(AChE)和2型毒蕈碱型ACh受体(MAChR)组成,用于合成、释放、降解ACh以及使ACh转导信号。NNCS与心脏细胞存活、血管生成和葡萄糖代谢相关。这些功能的受损是糖尿病性心脏病(DHD)的特征。NNCS在DHD中的作用尚不清楚。本研究的目的是研究糖尿病对心脏NNCS的影响,并确定激活心脏NNCS是否对糖尿病心脏有益。
使用2型糖尿病患者和db/db小鼠的心室样本,通过蛋白质印迹分析来测量NNCS组分(ChAT、CHT1、VAChT、AChE和MAChR)和葡萄糖转运蛋白4(GLUT-4)的表达模式。为了确定心脏NNCS在糖尿病心脏中的功能,构建了心脏特异性过表达ChAT基因的db/db小鼠模型(db/db-ChAT-tg)。对动物进行连续随访,并在不同时间点采集样本,用于对心脏NNCS组分以及促存活和促血管生成信号通路进行分子和组织学分析。
免疫印迹分析显示,2型糖尿病患者和db/db小鼠心脏中,心脏NNCS组分和GLUT-4发生了改变。有趣的是,db/db小鼠心脏中,心脏NNCS失调后GLUT-4表达下调。与db/db小鼠相比,db/db-ChAT-tg小鼠的心脏和血管功能得以保留。功能改善与心脏ACh和葡萄糖含量增加、持续的血管生成以及纤维化减少有关。这些有益作用与PI3K/Akt/HIF1α信号通路的上调及其下游靶点GLUT-4和VEGF-A的表达增加有关。
我们首次提供了DHD中心脏NNCS失调的证据。增加心脏ACh含量有益,是预防或延缓DHD发展的一种潜在新治疗策略。