Suppr超能文献

胃肠道炎症中的活性氧:拯救还是破坏?

ROS in gastrointestinal inflammation: Rescue Or Sabotage?

作者信息

Aviello G, Knaus U G

机构信息

National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.

Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.

出版信息

Br J Pharmacol. 2017 Jun;174(12):1704-1718. doi: 10.1111/bph.13428. Epub 2016 Mar 3.

Abstract

UNLABELLED

The intestine is composed of many distinct cell types that respond to commensal microbiota or pathogens with immune tolerance and proinflammatory signals respectively. ROS produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial responses and regulation of signalling pathways including processes involved in wound healing. Impaired ROS production due to inactivating patient variants in genes encoding NADPH oxidases as ROS source has been associated with Crohn's disease and pancolitis, whereas overproduction of ROS due to up-regulation of oxidases or altered mitochondrial function was linked to ileitis and ulcerative colitis. Here, we discuss recent advances in our understanding of how maintaining a redox balance is crucial to preserve gut homeostasis.

LINKED ARTICLES

This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.

摘要

未标注

肠道由许多不同的细胞类型组成,这些细胞类型分别以免疫耐受和促炎信号对共生微生物群或病原体作出反应。黏膜驻留细胞或新招募的固有免疫细胞产生的活性氧(ROS)对于抗菌反应和信号通路的调节至关重要,这些信号通路包括伤口愈合过程。由于编码作为ROS来源的NADPH氧化酶的基因中的失活患者变体导致ROS产生受损,这与克罗恩病和全结肠炎有关,而由于氧化酶上调或线粒体功能改变导致的ROS过量产生与回肠炎和溃疡性结肠炎有关。在这里,我们讨论了在理解维持氧化还原平衡对维持肠道稳态至关重要方面的最新进展。

相关文章

本文是关于健康与疾病中的氧化还原生物学和氧化应激主题部分的一部分。要查看本部分中的其他文章,请访问http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc。

相似文献

1
ROS in gastrointestinal inflammation: Rescue Or Sabotage?
Br J Pharmacol. 2017 Jun;174(12):1704-1718. doi: 10.1111/bph.13428. Epub 2016 Mar 3.
2
NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease.
Br J Pharmacol. 2017 Jun;174(12):1733-1749. doi: 10.1111/bph.13425. Epub 2016 Feb 26.
5
Pharmacology of oxidative stress: translational opportunities.
Br J Pharmacol. 2017 Jun;174(12):1511-1513. doi: 10.1111/bph.13795.
6
NADPH oxidases and ROS signaling in the gastrointestinal tract.
Mucosal Immunol. 2018 Jul;11(4):1011-1023. doi: 10.1038/s41385-018-0021-8. Epub 2018 May 9.
7
Redox-based therapeutics in neurodegenerative disease.
Br J Pharmacol. 2017 Jun;174(12):1750-1770. doi: 10.1111/bph.13551. Epub 2016 Aug 25.
8
Redox signaling in the gastrointestinal tract.
Free Radic Biol Med. 2017 Mar;104:75-103. doi: 10.1016/j.freeradbiomed.2016.12.048. Epub 2017 Jan 3.
9
Reactive oxygen species: key regulators in vascular health and diseases.
Br J Pharmacol. 2018 Apr;175(8):1279-1292. doi: 10.1111/bph.13828. Epub 2017 Jul 11.
10
Microglia antioxidant systems and redox signalling.
Br J Pharmacol. 2017 Jun;174(12):1719-1732. doi: 10.1111/bph.13426. Epub 2016 Mar 3.

引用本文的文献

1
Focal adhesion kinase: A promising regulator of colitis-associated healing.
World J Gastroenterol. 2025 Sep 7;31(33):105466. doi: 10.3748/wjg.v31.i33.105466.
3
Advanced Nanomedicines for Treating Refractory Inflammation-Related Diseases.
Nanomicro Lett. 2025 Jul 7;17(1):323. doi: 10.1007/s40820-025-01829-7.
5
Mitochondrial Dysfunction and Atherosclerosis: The Problem and the Search for Its Solution.
Biomedicines. 2025 Apr 15;13(4):963. doi: 10.3390/biomedicines13040963.
7
Reduction of colitis in mice by chemically programmed supramolecular nanoassemblies of vitamin-lipid conjugates.
J Nanobiotechnology. 2025 Mar 25;23(1):247. doi: 10.1186/s12951-025-03322-0.
8
Topological segregation of stress sensors along the gut crypt-villus axis.
Nature. 2025 Apr;640(8059):732-742. doi: 10.1038/s41586-024-08581-9. Epub 2025 Feb 12.
9
Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis.
World J Gastroenterol. 2025 Jan 14;31(2):100589. doi: 10.3748/wjg.v31.i2.100589.

本文引用的文献

1
The Concise Guide to PHARMACOLOGY 2015/16: Enzymes.
Br J Pharmacol. 2015 Dec;172(24):6024-109. doi: 10.1111/bph.13354.
2
The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors.
Br J Pharmacol. 2015 Dec;172(24):5979-6023. doi: 10.1111/bph.13353.
3
The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors.
Br J Pharmacol. 2015 Dec;172(24):5744-869. doi: 10.1111/bph.13348.
4
The global burden of IBD: from 2015 to 2025.
Nat Rev Gastroenterol Hepatol. 2015 Dec;12(12):720-7. doi: 10.1038/nrgastro.2015.150. Epub 2015 Sep 1.
5
Defects in NADPH Oxidase Genes and in Very Early Onset Inflammatory Bowel Disease.
Cell Mol Gastroenterol Hepatol. 2015 Sep 1;1(5):489-502. doi: 10.1016/j.jcmgh.2015.06.005.
6
Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis.
J Clin Invest. 2015 Sep;125(9):3606-18. doi: 10.1172/JCI81423. Epub 2015 Aug 17.
7
Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine.
Gastroenterology. 2015 Dec;149(7):1849-59. doi: 10.1053/j.gastro.2015.07.062. Epub 2015 Aug 7.
8
Genetic disorders coupled to ROS deficiency.
Redox Biol. 2015 Dec;6:135-156. doi: 10.1016/j.redox.2015.07.009. Epub 2015 Jul 17.
9
CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells.
Exp Hematol. 2015 Oct;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub 2015 Jun 19.
10
Vitamin D Deficiency Associated with Disease Activity in Patients with Inflammatory Bowel Diseases.
Dig Dis Sci. 2015 Oct;60(10):3085-91. doi: 10.1007/s10620-015-3727-4. Epub 2015 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验