Pérez Salvador, Taléns-Visconti Raquel, Rius-Pérez Sergio, Finamor Isabela, Sastre Juan
Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
Free Radic Biol Med. 2017 Mar;104:75-103. doi: 10.1016/j.freeradbiomed.2016.12.048. Epub 2017 Jan 3.
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
氧化还原信号传导主要通过烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOXs)调节Wnt/β-连环蛋白和Notch信号通路,从而调控胃肠道上皮细胞的生理自我更新、增殖、迁移和分化。在肠道中,细胞内和细胞外的硫醇氧化还原状态调节上皮细胞的增殖潜能。此外,共生细菌通过NOX1和双氧化酶2产生的活性氧(ROS)促进肠道上皮的稳态。氧化还原稳态的丧失参与多种胃肠道疾病的发病机制和发展过程,如巴雷特食管、食管腺癌、消化性溃疡、胃癌、缺血性肠损伤、乳糜泻、炎症性肠病和结直肠癌。超氧阴离子的过量产生以及超氧化物歧化酶的失活参与了巴雷特食管及其向腺癌转变的发病机制。在幽门螺杆菌诱导的消化性溃疡中,白细胞浸润和NOX1产生的氧化应激会加重黏膜损伤,尤其是在下调Nrf2的HspB+菌株中。在乳糜泻中,氧化应激介导了麸质肽诱导的大部分细胞毒性作用,并增加了转谷氨酰胺酶水平,而亚硝化应激则导致紧密连接受损。炎症性肠病的进展依赖于促炎氧化还原敏感途径(如NLRP3炎性小体和NF-κB)与锰超氧化物歧化酶和谷胱甘肽过氧化物酶2适应性上调之间的平衡。在结直肠癌中,氧化还原信号表现出两面性:一方面,NOX1上调和产生的过氧化氢增强Wnt/β-连环蛋白和Notch增殖途径;另一方面,ROS可能通过不同的促凋亡机制破坏肿瘤进展。总之,氧化还原信号在胃肠道的生理和病理生理过程中起着关键作用。