Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G
Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.
Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland.
Br J Pharmacol. 2017 Jun;174(12):1719-1732. doi: 10.1111/bph.13426. Epub 2016 Mar 3.
For many years, microglia, the resident CNS macrophages, have been considered only in the context of pathology, but microglia are also glial cells with important physiological functions. Microglia-derived oxidant production by NADPH oxidase (NOX2) is implicated in many CNS disorders. Oxidants do not stand alone, however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defence mechanism, and further, we discuss in the context of protein thiolation of target redox proteins the necessity for tightly localized, timed and confined oxidant production to work in concert with antioxidant proteins to promote redox signalling. NOX2-mediated redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes by regulating major transcriptional programs mediated through NF-κB and Nrf2, major regulators of the inflammatory and antioxidant response respectively. As both antioxidants and NOX-derived oxidants are co-secreted, in some instances redox signalling may extend to neighboring cells through modification of surface or cytosolic target proteins. We consider a role for microglia NOX-derived oxidants in paracrine modification of synaptic function through long term depression and in the communication with the adaptive immune system. There is little doubt that a continued foray into the functions of the antioxidant response in microglia will reveal antioxidant proteins as dynamic players in redox signalling, which in concert with NOX-derived oxidants fulfil important roles in the autocrine or paracrine regulation of essential enzymes or transcriptional programs.
This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
多年来,作为中枢神经系统(CNS)固有巨噬细胞的小胶质细胞,一直仅在病理学背景下被研究,但小胶质细胞也是具有重要生理功能的神经胶质细胞。小胶质细胞通过NADPH氧化酶(NOX2)产生氧化剂,这与许多中枢神经系统疾病有关。然而,氧化剂并非孤立存在,也并非总是有害的。我们将从一般角度讨论小胶质细胞中的谷胱甘肽(GSH)合成及其与胱氨酸摄取和谷氨酸输出的关系,以及作为最重要抗氧化防御机制的硫氧还蛋白系统。此外,我们将在靶氧化还原蛋白的蛋白质硫醇化背景下,讨论紧密定位、定时和受限的氧化剂产生与抗氧化蛋白协同作用以促进氧化还原信号传导的必要性。NOX2介导的氧化还原信号传导通过调节分别由NF-κB和Nrf2介导的主要转录程序,来调节经典或替代性小胶质细胞活化表型的获得,NF-κB和Nrf2分别是炎症和抗氧化反应的主要调节因子。由于抗氧化剂和NOX衍生的氧化剂是共同分泌的,在某些情况下,氧化还原信号传导可能通过表面或胞质靶蛋白的修饰扩展到邻近细胞。我们认为小胶质细胞NOX衍生的氧化剂在通过长时程抑制对突触功能进行旁分泌修饰以及与适应性免疫系统的通讯中发挥作用。毫无疑问,持续深入研究小胶质细胞中抗氧化反应的功能将揭示抗氧化蛋白是氧化还原信号传导中的动态参与者,它们与NOX衍生的氧化剂协同作用,在基本酶或转录程序的自分泌或旁分泌调节中发挥重要作用。
本文是关于健康与疾病中的氧化还原生物学和氧化应激主题部分的一部分。要查看本节中的其他文章,请访问http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc。