Suppr超能文献

医用级钴铬合金中微孔的电化学蚀刻作为药物洗脱支架的储库

Electrochemical etching of micro-pores in medical grade cobalt-chromium alloy as reservoirs for drug eluting stents.

作者信息

Fuchsberger Kai, Binder Karoline, Burkhardt Claus, Freudigmann Christian, Herrmann Markus, Stelzle Martin

机构信息

NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.

出版信息

J Mater Sci Mater Med. 2016 Mar;27(3):47. doi: 10.1007/s10856-015-5660-7. Epub 2016 Jan 12.

Abstract

Drug eluting stents (DES) have shown efficacy in reducing restenosis after angioplasty followed by application of a coronary stent. However, polymer matrices typically used for immobilizing drugs on the stent surface may cause irritation and have limited drug loading capacity. In contrast, drug loading into micro- or nanopores created within the stent material could avoid these problems. We present a technology based on electrochemically induced pitting corrosion to form pores in medical grade steel, followed by loading with rapamycin. This process is applied to pore formation and drug loading in coronary stents consisting of L605 medical steel. Sustained release of the drug over 28 days at rates comparable to established DES was demonstrated. This technology is capable of creating pores with well-defined pore size and filling of these pores by a drug employing a crystallization process thus completely avoiding polymer matrices to immobilize drugs. Electrochemically induced pitting corrosion provides a generic means to introduce micro-pores suitable as drug reservoirs into medical grade steel without the need for any further matrix material. Further research will expand these findings to other materials and types of implants that could benefit from the additional function of drug release and/or improved implant/tissue integration.

摘要

药物洗脱支架(DES)已显示出在冠状动脉支架置入术后血管成形术减少再狭窄方面的疗效。然而,通常用于将药物固定在支架表面的聚合物基质可能会引起刺激,并且药物负载能力有限。相比之下,将药物加载到支架材料内形成的微孔或纳米孔中可以避免这些问题。我们提出了一种基于电化学诱导点蚀腐蚀的技术,用于在医用级钢中形成孔隙,然后加载雷帕霉素。该过程应用于由L605医用钢制成的冠状动脉支架的孔隙形成和药物加载。结果表明,药物在28天内持续释放,释放速率与已有的DES相当。该技术能够创建具有明确孔径的孔隙,并通过结晶过程用药物填充这些孔隙,从而完全避免使用聚合物基质来固定药物。电化学诱导点蚀腐蚀提供了一种通用方法,无需任何其他基质材料即可将适合作为药物储存库的微孔引入医用级钢中。进一步的研究将把这些发现扩展到其他材料和类型的植入物,这些植入物可能受益于药物释放的附加功能和/或改善的植入物/组织整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验