Suppr超能文献

通过分层组套索正则化学习交互作用。

Learning interactions via hierarchical group-lasso regularization.

作者信息

Lim Michael, Hastie Trevor

机构信息

Statistics Department, Stanford University.

出版信息

J Comput Graph Stat. 2015;24(3):627-654. doi: 10.1080/10618600.2014.938812. Epub 2015 Sep 16.

Abstract

We introduce a method for learning pairwise interactions in a linear regression or logistic regression model in a manner that satisfies strong hierarchy: whenever an interaction is estimated to be nonzero, both its associated main effects are also included in the model. We motivate our approach by modeling pairwise interactions for categorical variables with arbitrary numbers of levels, and then show how we can accommodate continuous variables as well. Our approach allows us to dispense with explicitly applying constraints on the main effects and interactions for identifiability, which results in interpretable interaction models. We compare our method with existing approaches on both simulated and real data, including a genome-wide association study, all using our R package glinternet.

摘要

我们介绍了一种在线性回归或逻辑回归模型中学习成对交互作用的方法,该方法满足强层次结构:只要估计某个交互作用不为零,其相关的两个主效应也会包含在模型中。我们通过对具有任意多个水平的分类变量的成对交互作用进行建模来推动我们的方法,然后展示如何也能纳入连续变量。我们的方法使我们无需为可识别性而对主效应和交互作用明确施加约束,从而得到可解释的交互作用模型。我们使用我们的R包glinternet,在模拟数据和真实数据(包括全基因组关联研究)上,将我们的方法与现有方法进行了比较。

相似文献

1
Learning interactions via hierarchical group-lasso regularization.
J Comput Graph Stat. 2015;24(3):627-654. doi: 10.1080/10618600.2014.938812. Epub 2015 Sep 16.
2
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
5
A systematic comparison of statistical methods to detect interactions in exposome-health associations.
Environ Health. 2017 Jul 14;16(1):74. doi: 10.1186/s12940-017-0277-6.
6
Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.
Front Neurosci. 2017 Nov 16;11:635. doi: 10.3389/fnins.2017.00635. eCollection 2017.
7
Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.
Artif Intell Med. 2016 Sep;72:12-21. doi: 10.1016/j.artmed.2016.07.003. Epub 2016 Jul 29.
8
A Pliable Lasso.
J Comput Graph Stat. 2020;29(1):215-225. doi: 10.1080/10618600.2019.1648271. Epub 2020 Sep 5.
9
Lasso estimation of hierarchical interactions for analyzing heterogeneity of treatment effect.
Stat Med. 2021 Nov 10;40(25):5417-5433. doi: 10.1002/sim.9132. Epub 2021 Jul 8.
10
pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.
BMC Bioinformatics. 2017 Sep 29;18(1):429. doi: 10.1186/s12859-017-1838-y.

引用本文的文献

1
Synthesizing data from pretest-posttest-control-group designs in mediation meta-analysis.
Behav Res Methods. 2025 Apr 15;57(5):146. doi: 10.3758/s13428-025-02661-y.
2
AI-Driven Prediction of Cardio-Oncology Biomarkers Through Protein Corona Analysis.
Chem Eng J. 2025 Apr;509. doi: 10.1016/j.cej.2025.161134. Epub 2025 Mar 1.
3
A review of survival stacking: a method to cast survival regression analysis as a classification problem.
Int J Biostat. 2025 Mar 28;21(1):37-51. doi: 10.1515/ijb-2022-0055. eCollection 2025 May 1.
7
Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.
Stat Methods Med Res. 2025 Jan;34(1):180-198. doi: 10.1177/09622802241293768. Epub 2024 Dec 10.
8
BMI Interacts with the Genome to Regulate Gene Expression Globally, with Emphasis in the Brain and Gut.
medRxiv. 2024 Nov 28:2024.11.26.24317923. doi: 10.1101/2024.11.26.24317923.
9
The AORTA Gene score for detection and risk stratification of ascending aortic dilation.
Eur Heart J. 2024 Oct 21;45(40):4318-4332. doi: 10.1093/eurheartj/ehae474.
10
Power Analysis of Exposure Mixture Studies via Monte Carlo Simulations.
Stat Biosci. 2024 Jul;16(2):321-346. doi: 10.1007/s12561-023-09385-7. Epub 2023 Oct 1.

本文引用的文献

1
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
2
Strong rules for discarding predictors in lasso-type problems.
J R Stat Soc Series B Stat Methodol. 2012 Mar;74(2):245-266. doi: 10.1111/j.1467-9868.2011.01004.x.
3
Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1580-91. doi: 10.1109/TCBB.2011.46.
5
Identification of SNP interactions using logic regression.
Biostatistics. 2008 Jan;9(1):187-98. doi: 10.1093/biostatistics/kxm024. Epub 2007 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验