Suppr超能文献

分层交互作用的套索估计分析治疗效果的异质性。

Lasso estimation of hierarchical interactions for analyzing heterogeneity of treatment effect.

机构信息

Department of Biometrics, Eli Lilly and Company, Indianapolis, Indiana, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

Stat Med. 2021 Nov 10;40(25):5417-5433. doi: 10.1002/sim.9132. Epub 2021 Jul 8.

Abstract

Individuals differ in how they respond to a given treatment. In an effort to predict the treatment response and analyze the heterogeneity of treatment effect, we propose a general modeling framework by identifying treatment-covariate interactions honoring a hierarchical condition. We construct a single-step norm penalty procedure that maintains the hierarchical structure of interactions in the sense that a treatment-covariate interaction term is included in the model only when either the covariate or both the covariate and treatment have nonzero main effects. We developed a constrained Lasso approach with two parameterization schemes that enforce the hierarchical interaction restriction differently. We solved the resulting constrained optimization problem using a spectral projected gradient method. We compared our methods to the unstructured Lasso using simulation studies including a scenario that violates the hierarchical condition (misspecified model). The simulations showed that our methods yielded more parsimonious models and outperformed the unstructured Lasso for correctly identifying nonzero treatment-covariate interactions. The superior performance of our methods are also corroborated by an application to a large randomized clinical trial data investigating a drug for treating congestive heart failure (N = 2569). Our methods provide a well-suited approach for doing secondary analysis in clinical trials to analyze heterogeneous treatment effects and to identify predictive biomarkers.

摘要

个体对给定治疗的反应存在差异。为了预测治疗反应并分析治疗效果的异质性,我们提出了一种通用的建模框架,通过识别尊重分层条件的治疗协变量交互作用来实现。我们构建了一种单步范数惩罚程序,该程序在保持交互作用的层次结构方面具有优势,即仅当协变量或协变量和治疗都具有非零主效应时,才会在模型中包含治疗协变量交互项。我们开发了一种具有两种参数化方案的约束套索方法,以不同的方式强制执行分层交互限制。我们使用谱投影梯度方法解决了由此产生的约束优化问题。我们通过模拟研究将我们的方法与非结构化套索进行了比较,其中包括违反分层条件的情况(指定模型错误)。模拟结果表明,我们的方法产生了更简约的模型,并且在正确识别非零治疗协变量交互作用方面优于非结构化套索。我们的方法在一项应用于大型随机临床试验数据的药物治疗充血性心力衰竭(N=2569)的应用中也得到了验证。我们的方法为临床试验中的二次分析提供了一种合适的方法,可用于分析异质治疗效果并识别预测生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验