Suppr超能文献

用于分层交互的套索法

A LASSO FOR HIERARCHICAL INTERACTIONS.

作者信息

Bien Jacob, Taylor Jonathan, Tibshirani Robert

机构信息

Cornell University, Stanford University and Stanford University.

出版信息

Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.

Abstract

We add a set of convex constraints to the lasso to produce sparse interaction models that honor the hierarchy restriction that an interaction only be included in a model if one or both variables are marginally important. We give a precise characterization of the effect of this hierarchy constraint, prove that hierarchy holds with probability one and derive an unbiased estimate for the degrees of freedom of our estimator. A bound on this estimate reveals the amount of fitting "saved" by the hierarchy constraint. We distinguish between -the number of nonzero coefficients-and -the number of raw variables one must to make a new prediction. Hierarchy focuses on the latter, which is more closely tied to important data collection concerns such as cost, time and effort. We develop an algorithm, available in the R package hierNet, and perform an empirical study of our method.

摘要

我们在套索回归中添加一组凸约束,以生成稀疏交互模型,该模型遵循层次结构限制,即只有当一个或两个变量在边际上重要时,交互项才会被包含在模型中。我们精确刻画了这种层次约束的效果,证明层次结构以概率1成立,并推导出我们估计量自由度的无偏估计。该估计的一个界揭示了层次约束“节省”的拟合量。我们区分了非零系数的数量和进行新预测所需的原始变量的数量。层次结构关注后者,这与成本、时间和精力等重要的数据收集问题联系更紧密。我们开发了一种算法(可在R包hierNet中获取),并对我们的方法进行了实证研究。

相似文献

1
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
2
Convex Modeling of Interactions with Strong Heredity.具有强遗传性的相互作用的凸模型
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.
5
The lasso for high dimensional regression with a possible change point.具有可能变化点的高维回归套索法
J R Stat Soc Series B Stat Methodol. 2016 Jan;78(1):193-210. doi: 10.1111/rssb.12108. Epub 2015 Feb 15.
6
Learning interactions via hierarchical group-lasso regularization.通过分层组套索正则化学习交互作用。
J Comput Graph Stat. 2015;24(3):627-654. doi: 10.1080/10618600.2014.938812. Epub 2015 Sep 16.
9
Convex Banding of the Covariance Matrix.协方差矩阵的凸带形
J Am Stat Assoc. 2016;111(514):834-845. doi: 10.1080/01621459.2015.1058265. Epub 2016 Aug 18.
10
Controlling the false discoveries in LASSO.控制LASSO中的错误发现。
Biometrics. 2017 Dec;73(4):1102-1110. doi: 10.1111/biom.12665. Epub 2017 Feb 9.

引用本文的文献

6
Gene-environment interaction analysis under the Cox model.Cox模型下的基因-环境相互作用分析。
Ann Inst Stat Math. 2023 Dec;75(6):931-948. doi: 10.1007/s10463-023-00871-9. Epub 2023 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验