IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.
我们提出了一种用于单图像超分辨率 (SR) 的深度学习方法。我们的方法直接学习低/高分辨率图像之间的端到端映射。该映射表示为一个深度卷积神经网络 (CNN),它以低分辨率图像作为输入,并输出高分辨率图像。我们进一步表明,基于传统稀疏编码的 SR 方法也可以看作是一个深度卷积网络。但与传统方法分别处理每个分量不同,我们的方法联合优化所有层。我们的深度 CNN 具有轻量级的结构,但展示了最先进的恢复质量,并实现了快速的实际在线使用速度。我们探索不同的网络结构和参数设置,以在性能和速度之间取得平衡。此外,我们还扩展了我们的网络以同时处理三个颜色通道,并显示出更好的整体重建质量。