Suppr超能文献

通过氘核磁共振光谱和分子动力学模拟研究膜中脂肪族胆固醇侧链的结构与动力学

Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by (2)H NMR spectroscopy and molecular dynamics simulation.

作者信息

Vogel Alexander, Scheidt Holger A, Baek Dong Jae, Bittman Robert, Huster Daniel

机构信息

Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04275 Leipzig, Germany.

College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea and Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY 11367-1597, USA.

出版信息

Phys Chem Chem Phys. 2016 Feb 7;18(5):3730-8. doi: 10.1039/c5cp05084g.

Abstract

Cholesterol is an evolutionarily highly optimized molecule particularly known for its ability to condense the phospholipids in cellular membranes. Until recently, the accompanying increase in the chain order of the surrounding phospholipids was attributed to the planar and rigid tetracyclic ring structure of cholesterol. However, detailed investigations of cholesterol's aliphatic side chain demonstrated that this side chain is responsible for approximately half of the condensation effect. Therefore, we investigated the structure and dynamics of the aliphatic side chain of cholesterol using (2)H solid-state nuclear magnetic resonance (NMR) spectroscopy and microsecond timescale all-atom molecular dynamics (MD) simulations in four different model membranes: POPC, DPPC, PSM, and POPC/PSM (1 : 1 mol/mol) and at three different temperatures: 5 °C, 37 °C, and 50 °C. A cholesterol variant, in which 11 hydrogens of the aliphatic side chain were exchanged for deuterium, was used and the respective (2)H NMR spectra confirmed the axially asymmetric rotational diffusion of cholesterol in DPPC and PSM. Furthermore, NMR spectra indicated that some hydrogens showed an unexpected magnetic inequivalency. This finding was confirmed by all-atom molecular dynamics simulations and detailed analysis revealed that the hydrogens of the methylene groups at C22, C23, and C24 are magnetically inequivalent. This inequivalency is caused by steric clashes of the aliphatic side chain with the ring structure of cholesterol as well as the branched C21 methyl group. These excluded volume effects result in reduced conformational flexibility of the aliphatic side chain of cholesterol and explain its high order (order parameter of 0.78 for chain motions) and large contribution to the condensation effect. Additionally, the motional pattern of the side chain becomes highly anisotropic such that it shows larger fluctuations perpendicular to the ring plane of cholesterol with a biaxiality of the distribution of 0.046. Overall, our results shed light on the mechanism how the aliphatic side chain is able to contribute about half of the condensation effect of cholesterol.

摘要

胆固醇是一种在进化上高度优化的分子,尤其以其凝聚细胞膜中磷脂的能力而闻名。直到最近,周围磷脂链序的相应增加都归因于胆固醇的平面刚性四环结构。然而,对胆固醇脂肪族侧链的详细研究表明,该侧链约占凝聚效应的一半。因此,我们使用(2)H 固态核磁共振(NMR)光谱和微秒级全原子分子动力学(MD)模拟,在四种不同的模型膜:POPC、DPPC、PSM 和 POPC/PSM(1:1 摩尔/摩尔)以及三个不同温度:5°C、37°C 和 50°C 下,研究了胆固醇脂肪族侧链的结构和动力学。使用了一种胆固醇变体,其中脂肪族侧链的 11 个氢被氘取代,相应的(2)H NMR 光谱证实了胆固醇在 DPPC 和 PSM 中轴向不对称的旋转扩散。此外,NMR 光谱表明一些氢显示出意外的磁不等价性。这一发现通过全原子分子动力学模拟得到证实,详细分析表明 C22、C23 和 C24 处亚甲基的氢在磁学上是不等价的。这种不等价性是由脂肪族侧链与胆固醇环结构以及分支的 C21 甲基之间的空间冲突引起的。这些排除体积效应导致胆固醇脂肪族侧链的构象灵活性降低,并解释了其高序性(链运动的序参数为 0.78)以及对凝聚效应的巨大贡献。此外,侧链的运动模式变得高度各向异性,以至于它在垂直于胆固醇环平面的方向上显示出更大的波动,分布的双轴性为 0.046。总体而言,我们的结果揭示了脂肪族侧链如何能够贡献约一半胆固醇凝聚效应的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验