Suppr超能文献

脂质双层中高度 C 富集胆固醇的固态 NMR 研究。

Solid-State NMR of highly C-enriched cholesterol in lipid bilayers.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

Methods. 2018 Apr 1;138-139:47-53. doi: 10.1016/j.ymeth.2018.01.008. Epub 2018 Feb 21.

Abstract

Cholesterol (Chol) is vital for cell function as it is essential to a myriad of biochemical and biophysical processes. The atomistic details of Chol's interactions with phospholipids and proteins is therefore of fundamental interest, and NMR offers unique opportunities to interrogate these properties at high resolution. Towards this end, here we describe approaches for examining the structure and dynamics of Chol in lipid bilayers using high levels of C enrichment in combination with magic-angle spinning (MAS) methods. We quantify the incorporation levels and demonstrate high sensitivity and resolution in 2D C-C and H-C spectra, enabling de novo assignments and site-resolved order parameter measurements obtained in a fraction of the time required for experiments with natural abundance sterols. We envision many potential future applications of these methods to study sterol interactions with drugs, lipids and proteins.

摘要

胆固醇(Chol)对于细胞功能至关重要,因为它是无数生化和生物物理过程所必需的。因此,Chol 与磷脂和蛋白质相互作用的原子细节具有根本的重要性,而 NMR 提供了独特的机会,可以在高分辨率下研究这些性质。为此,本文描述了使用高水平的 C 丰度结合魔角旋转(MAS)方法研究脂质双层中 Chol 结构和动力学的方法。我们定量了掺入水平,并在 2D C-C 和 H-C 谱中展示了高灵敏度和分辨率,使从头分配和位分辨有序参数测量在所需时间的一小部分内完成,而使用天然丰度固醇进行实验则需要大量时间。我们设想这些方法在研究固醇与药物、脂质和蛋白质相互作用方面有许多潜在的未来应用。

相似文献

1
Solid-State NMR of highly C-enriched cholesterol in lipid bilayers.
Methods. 2018 Apr 1;138-139:47-53. doi: 10.1016/j.ymeth.2018.01.008. Epub 2018 Feb 21.
2
Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
Biochim Biophys Acta. 2013 Aug;1828(8):1889-98. doi: 10.1016/j.bbamem.2013.03.028. Epub 2013 Apr 6.
4
NMR spectroscopy of lipid bilayers.
Methods Mol Biol. 2010;654:341-59. doi: 10.1007/978-1-60761-762-4_18.
7
Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes.
Chem Rev. 2017 Oct 11;117(19):12087-12132. doi: 10.1021/acs.chemrev.6b00619. Epub 2017 Sep 14.
10
Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):334-41. doi: 10.1016/j.bbamem.2014.05.003. Epub 2014 May 13.

引用本文的文献

1
Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles.
Biochemistry. 2025 Apr 1;64(7):1484-1500. doi: 10.1021/acs.biochem.4c00452. Epub 2025 Mar 19.
3
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
4
Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes.
Biophys J. 2024 Nov 19;123(22):3923-3934. doi: 10.1016/j.bpj.2024.10.004. Epub 2024 Oct 10.
6
Segmental Dynamics of Membranous Cholesterol are Coupled.
J Am Chem Soc. 2023 Jul 19;145(28):15043-15048. doi: 10.1021/jacs.3c01775. Epub 2023 Jul 6.
7
Analysis of the orientation of cholesterol in high-density lipoprotein nanodiscs using solid-state NMR.
Phys Chem Chem Phys. 2022 Oct 5;24(38):23651-23660. doi: 10.1039/d2cp02393h.
8
H,C-Cholesterol for Dynamics and Structural Studies of Biological Membranes.
ACS Omega. 2022 May 10;7(20):17151-17160. doi: 10.1021/acsomega.2c00796. eCollection 2022 May 24.
9
A Cholesterol Dimer Stabilizes the Inactivated State of an Inward-Rectifier Potassium Channel.
Angew Chem Int Ed Engl. 2022 Mar 21;61(13):e202112232. doi: 10.1002/anie.202112232. Epub 2022 Feb 9.
10
Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers.
J Phys Chem B. 2021 Feb 25;125(7):1825-1837. doi: 10.1021/acs.jpcb.0c10631. Epub 2021 Feb 9.

本文引用的文献

1
Exploiting Uniformly C-Labeled Carbohydrates for Probing Carbohydrate-Protein Interactions by NMR Spectroscopy.
J Am Chem Soc. 2017 May 3;139(17):6210-6216. doi: 10.1021/jacs.7b01929. Epub 2017 Apr 21.
2
Death Receptor 5 Networks Require Membrane Cholesterol for Proper Structure and Function.
J Mol Biol. 2016 Dec 4;428(24 Pt A):4843-4855. doi: 10.1016/j.jmb.2016.10.001. Epub 2016 Oct 6.
4
Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10926-31. doi: 10.1073/pnas.1501430112. Epub 2015 Aug 17.
5
Nontoxic antimicrobials that evade drug resistance.
Nat Chem Biol. 2015 Jul;11(7):481-7. doi: 10.1038/nchembio.1821. Epub 2015 Jun 1.
6
HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains.
Nat Chem Biol. 2015 Jun;11(6):424-31. doi: 10.1038/nchembio.1800. Epub 2015 Apr 27.
7
Cholesterol under oxidative stress-How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols.
Free Radic Biol Med. 2015 Jul;84:30-41. doi: 10.1016/j.freeradbiomed.2015.03.006. Epub 2015 Mar 17.
8
Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
Chem Phys Lipids. 2014 Dec;184:82-104. doi: 10.1016/j.chemphyslip.2014.10.004. Epub 2014 Nov 1.
9
Amphotericin forms an extramembranous and fungicidal sterol sponge.
Nat Chem Biol. 2014 May;10(5):400-6. doi: 10.1038/nchembio.1496. Epub 2014 Mar 30.
10
NBD-labeled cholesterol analogues in phospholipid bilayers: insights from molecular dynamics.
J Phys Chem B. 2013 Nov 7;117(44):13731-42. doi: 10.1021/jp406135a. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验