Suppr超能文献

采用预测概率的对照多臂平台设计

Controlled multi-arm platform design using predictive probability.

作者信息

Hobbs Brian P, Chen Nan, Lee J Jack

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Stat Methods Med Res. 2018 Jan;27(1):65-78. doi: 10.1177/0962280215620696. Epub 2016 Jan 12.

Abstract

The process of screening agents one-at-a-time under the current clinical trials system suffers from several deficiencies that could be addressed in order to extend financial and patient resources. In this article, we introduce a statistical framework for designing and conducting randomized multi-arm screening platforms with binary endpoints using Bayesian modeling. In essence, the proposed platform design consolidates inter-study control arms, enables investigators to assign more new patients to novel therapies, and accommodates mid-trial modifications to the study arms that allow both dropping poorly performing agents as well as incorporating new candidate agents. When compared to sequentially conducted randomized two-arm trials, screening platform designs have the potential to yield considerable reductions in cost, alleviate the bottleneck between phase I and II, eliminate bias stemming from inter-trial heterogeneity, and control for multiplicity over a sequence of a priori planned studies. When screening five experimental agents, our results suggest that platform designs have the potential to reduce the mean total sample size by as much as 40% and boost the mean overall response rate by as much as 15%. We explain how to design and conduct platform designs to achieve the aforementioned aims and preserve desirable frequentist properties for the treatment comparisons. In addition, we demonstrate how to conduct a platform design using look-up tables that can be generated in advance of the study. The gains in efficiency facilitated by platform design could prove to be consequential in oncologic settings, wherein trials often lack a proper control, and drug development suffers from low enrollment, long inter-trial latency periods, and an unacceptably high rate of failure in phase III.

摘要

在当前的临床试验系统下,逐个筛选药物的过程存在若干缺陷,为了扩大资金和患者资源,这些缺陷是可以解决的。在本文中,我们介绍了一种统计框架,用于使用贝叶斯建模设计和开展具有二元终点的随机多臂筛选平台。本质上,所提出的平台设计整合了研究间的对照臂,使研究人员能够将更多新患者分配到新疗法中,并适应试验中期对研究臂的调整,既允许剔除表现不佳的药物,也允许纳入新的候选药物。与依次进行的随机双臂试验相比,筛选平台设计有可能大幅降低成本,缓解I期和II期之间的瓶颈,消除试验间异质性导致的偏差,并在先验计划的一系列研究中控制多重性。当筛选五种实验药物时,我们的结果表明,平台设计有可能将平均总样本量减少多达40%,并将平均总体缓解率提高多达15%。我们解释了如何设计和开展平台设计以实现上述目标,并在治疗比较中保留理想的频率论性质。此外,我们展示了如何使用可在研究前生成的查找表来进行平台设计。平台设计带来的效率提升在肿瘤学环境中可能会产生重大影响,在这种环境中,试验往往缺乏适当的对照,药物开发面临入组率低、试验间期长以及III期失败率高得令人无法接受的问题。

相似文献

1
Controlled multi-arm platform design using predictive probability.
Stat Methods Med Res. 2018 Jan;27(1):65-78. doi: 10.1177/0962280215620696. Epub 2016 Jan 12.
4
Adding new experimental arms to randomised clinical trials: Impact on error rates.
Clin Trials. 2020 Jun;17(3):273-284. doi: 10.1177/1740774520904346. Epub 2020 Feb 17.
6
A modest proposal for dropping poor arms in clinical trials.
Stat Med. 2014 Aug 30;33(19):3241-52. doi: 10.1002/sim.6169. Epub 2014 Apr 22.
7
Comparison of multi-arm multi-stage design and adaptive randomization in platform clinical trials.
Contemp Clin Trials. 2017 Mar;54:48-59. doi: 10.1016/j.cct.2017.01.003. Epub 2017 Jan 13.
8
Bayesian adaptive designs for multi-arm trials: an orthopaedic case study.
Trials. 2020 Jan 14;21(1):83. doi: 10.1186/s13063-019-4021-0.
9
A predictive probability design for phase II cancer clinical trials.
Clin Trials. 2008;5(2):93-106. doi: 10.1177/1740774508089279.
10
A Bayesian-frequentist two-stage single-arm phase II clinical trial design.
Stat Med. 2012 Aug 30;31(19):2055-67. doi: 10.1002/sim.5330. Epub 2012 Mar 13.

引用本文的文献

1
INCEPT: The Intensive Care Platform Trial-Design and protocol.
Acta Anaesthesiol Scand. 2025 Apr;69(4):e70023. doi: 10.1111/aas.70023.
2
Bayesian Optimal Designs for Multi-Arm Multi-Stage Phase II Randomized Clinical Trials with Multiple Endpoints.
Stat Biopharm Res. 2024;16(3):315-325. doi: 10.1080/19466315.2024.2344543. Epub 2024 May 17.
3
Treatment Comparisons in Adaptive Platform Trials Adjusting for Temporal Drift.
Stat Biopharm Res. 2024;16(3):361-370. doi: 10.1080/19466315.2023.2292238. Epub 2024 Jan 5.
4
Bayesian sequential monitoring strategies for trials of digestive cancer therapeutics.
BMC Med Res Methodol. 2024 Jul 19;24(1):154. doi: 10.1186/s12874-024-02278-3.
5
Characteristics, Progression, and Output of Randomized Platform Trials: A Systematic Review.
JAMA Netw Open. 2024 Mar 4;7(3):e243109. doi: 10.1001/jamanetworkopen.2024.3109.
8
Optimal predictive probability designs for randomized biomarker-guided oncology trials.
Front Oncol. 2022 Dec 6;12:955056. doi: 10.3389/fonc.2022.955056. eCollection 2022.

本文引用的文献

1
Innovative Clinical Trials: The LUNG-MAP Study.
Clin Pharmacol Ther. 2015 May;97(5):488-91. doi: 10.1002/cpt.88.
2
Correcting for multiple-testing in multi-arm trials: is it necessary and is it done?
Trials. 2014 Sep 17;15:364. doi: 10.1186/1745-6215-15-364.
3
More multiarm randomised trials of superiority are needed.
Lancet. 2014 Jul 26;384(9940):283-4. doi: 10.1016/S0140-6736(14)61122-3.
4
A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials.
Stat Med. 2014 Jun 15;33(13):2206-21. doi: 10.1002/sim.6086. Epub 2014 Jan 14.
5
Phase II trial design with Bayesian adaptive randomization and predictive probability.
J R Stat Soc Ser C Appl Stat. 2012 Mar 1;61(2):219-35. doi: 10.1111/j.1467-9876.2011.01006.x.
6
Clinical approval success rates for investigational cancer drugs.
Clin Pharmacol Ther. 2013 Sep;94(3):329-35. doi: 10.1038/clpt.2013.117. Epub 2013 Jun 5.
7
Planning multi-arm screening studies within the context of a drug development program.
Stat Med. 2013 Sep 10;32(20):3424-35. doi: 10.1002/sim.5787. Epub 2013 Mar 26.
8
Optimal design of multi-arm multi-stage trials.
Stat Med. 2012 Dec 30;31(30):4269-79. doi: 10.1002/sim.5513. Epub 2012 Jul 23.
9
Pathological complete response and accelerated drug approval in early breast cancer.
N Engl J Med. 2012 Jun 28;366(26):2438-41. doi: 10.1056/NEJMp1205737. Epub 2012 May 30.
10
The BATTLE trial: personalizing therapy for lung cancer.
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验