Suppr超能文献

Variable selection for binary classification using error rate p-values applied to metabolomics data.

作者信息

van Reenen Mari, Reinecke Carolus J, Westerhuis Johan A, Venter J Hendrik

机构信息

Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.

Department of Statistics, Faculty of Natural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.

出版信息

BMC Bioinformatics. 2016 Jan 14;17:33. doi: 10.1186/s12859-015-0867-7.

Abstract

BACKGROUND

Metabolomics datasets are often high-dimensional though only a limited number of variables are expected to be informative given a specific research question. The important task of selecting informative variables can therefore become complex. In this paper we look at discriminating between two groups. Two tasks need to be performed: (i) finding variables which differ between the two groups; and (ii) determining how the selected variables can be used to classify new subjects. We introduce an approach using minimum classification error rates as test statistics to find discriminatory and therefore informative variables. The thresholds resulting in the minimum error rates can be used to classify new subjects. This approach transforms error rates into p-values and is referred to as ERp.

RESULTS

We show that non-parametric hypothesis testing, based on minimum classification error rates as test statistics, can find statistically significantly shifted variables. The discriminatory ability of variables becomes more apparent when error rates are evaluated based on their corresponding p-values, as relatively high error rates can still be statistically significant. ERp can handle unequal and small group sizes, as well as account for the cost of misclassification. ERp retains (if known) or reveals (if unknown) the shift direction, aiding in biological interpretation. The threshold resulting in the minimum error rate can immediately be used to classify new subjects. We use NMR generated metabolomics data to illustrate how ERp is able to discriminate subjects diagnosed with Mycobacterium tuberculosis infected meningitis from a control group. The list of discriminatory variables produced by ERp contains all biologically relevant variables with appropriate shift directions discussed in the original paper from which this data is taken.

CONCLUSIONS

ERp performs variable selection and classification, is non-parametric and aids biological interpretation while handling unequal group sizes and misclassification costs. All this is achieved by a single approach which is easy to perform and interpret. ERp has the potential to address many other characteristics of metabolomics data. Future research aims to extend ERp to account for a large proportion of observations below the detection limit, as well as expand on interactions between variables.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340a/4712617/f6d500fa16c8/12859_2015_867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验