López-Barneo José, González-Rodríguez Patricia, Gao Lin, Fernández-Agüera M Carmen, Pardal Ricardo, Ortega-Sáenz Patricia
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
Am J Physiol Cell Physiol. 2016 Apr 15;310(8):C629-42. doi: 10.1152/ajpcell.00265.2015. Epub 2016 Jan 13.
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
氧气(O₂)对于细胞和全身的稳态至关重要。近年来,我们对因缺氧而发生的适应性过程的理解有了显著进展。颈动脉体(CB)是主要的动脉化学感受器,介导由缺氧引发的急性心肺反射(过度通气和交感神经激活)。颈动脉体由与血管和神经纤维紧密接触的细胞簇(小球)组成。球细胞是颈动脉体中对O₂敏感的成分,是类似神经元的细胞,含有对O₂敏感的K⁺通道,该通道会被缺氧抑制。这会导致细胞去极化、Ca²⁺内流以及递质释放,从而激活终止于呼吸中枢的感觉纤维。尽管已经提出了几种有吸引力的假说,但O₂调节K⁺通道的机制仍然不清楚。最近的数据表明,线粒体复合体I向膜K⁺通道发出信号在急性O₂感知中起基本作用。在暴露于低Po₂期间颈动脉体的激活对于适应慢性缺氧也是必要的。持续缺氧期间颈动脉体的生长取决于一群驻留干细胞的激活,这些干细胞也会被对O₂敏感的球细胞释放的递质激活。这些进展应该会促进对颈动脉体功能障碍在高度流行的人类疾病发病机制中作用的进一步研究。