Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41013 Seville, Spain.
Int J Mol Sci. 2020 Nov 3;21(21):8231. doi: 10.3390/ijms21218231.
The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.
颈动脉体(CB)是一种神经嵴衍生的器官,也是哺乳动物主要的动脉化学感受器,由称为肾小球的细胞簇组成。每个肾小球都包含神经元样的 O 感受性球细胞,这些细胞被岩神经节的感觉纤维支配,并与密集的有孔毛细血管网络紧密接触。在缺氧的情况下,球细胞释放递质激活传入纤维,作用于呼吸和自主中枢,引起过度通气和交感神经激活。球细胞被支持细胞(胶质样的 II 型细胞)的交错突起所包围。CB 具有非凡的结构可塑性,这在神经组织中是不常见的,因为它可以在暴露于持续缺氧的情况下(例如在高海拔地区居民或心肺疾病患者中)生长数倍于其正常大小。CB 在缺氧环境中的生长主要归因于新的肾小球和血管的生成。近年来,已经证明成年 CB 包含了一组静止的多能干细胞,以及向神经发生或血管生成谱系定向的不成熟祖细胞。在此,我们综述了 CB 生殖巢中不同细胞类型的主要特性。我们还总结了实验数据,表明 O 敏感的球细胞是 CB 可塑性的主要调节者。在暴露于缺氧环境时,球细胞释放的神经递质和神经调质作为旁分泌信号,诱导多能干细胞和祖细胞的增殖和分化,从而导致 CB 肥大和感觉输出增加。调节球细胞活性的药理学方法可能成为治疗因 CB 过度激活导致交感神经输出过度而引起的病理变化的有用临床工具。