Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.
J Physiol. 2017 Sep 15;595(18):6091-6120. doi: 10.1113/JP274684. Epub 2017 Aug 8.
Glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM) are essential for reflex cardiorespiratory adaptation to hypoxia. However, the mechanisms whereby these cells detect changes in O tension are poorly understood. The metabolic properties of acute O -sensing cells have been investigated by comparing the transcriptomes of CB and AM cells, which are O -sensitive, with superior cervical ganglion neurons, which are practically O -insensitive. In O -sensitive cells, we found a characteristic prolyl hydroxylase 3 down-regulation and hypoxia inducible factor 2α up-regulation, as well as overexpression of genes coding for three atypical mitochondrial electron transport subunits and pyruvate carboxylase, an enzyme that replenishes tricarboxylic acid cycle intermediates. In agreement with this observation, the inhibition of succinate dehydrogenase impairs CB acute O sensing. The responsiveness of peripheral chemoreceptor cells to acute hypoxia depends on a 'signature metabolic profile'.
Acute O sensing is a fundamental property of cells in the peripheral chemoreceptors, e.g. glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM), and is necessary for adaptation to hypoxia. These cells contain O -sensitive ion channels, which mediate membrane depolarization and transmitter release upon exposure to hypoxia. However, the mechanisms underlying the detection of changes in O tension by cells are still poorly understood. Recently, we suggested that CB glomus cells have specific metabolic features that favour the accumulation of reduced quinone and the production of mitochondrial NADH and reactive oxygen species during hypoxia. These signals alter membrane ion channel activity. To investigate the metabolic profile characteristic of acute O -sensing cells, we used adult mice to compare the transcriptomes of three cell types derived from common sympathoadrenal progenitors, but exhibiting variable responsiveness to acute hypoxia: CB and AM cells, which are O -sensitive (glomus cells > chromaffin cells), and superior cervical ganglion neurons, which are practically O -insensitive. In the O -sensitive cells, we found a characteristic mRNA expression pattern of prolyl hydroxylase 3/hypoxia inducible factor 2α and up-regulation of several genes, in particular three atypical mitochondrial electron transport subunits and some ion channels. In addition, we found that pyruvate carboxylase, an enzyme fundamental to tricarboxylic acid cycle anaplerosis, is overexpressed in CB glomus cells. We also observed that the inhibition of succinate dehydrogenase impairs CB acute O sensing. Our data suggest that responsiveness to acute hypoxia depends on a 'signature metabolic profile' in chemoreceptor cells.
颈动脉体(CB)中的球细胞和肾上腺髓质(AM)中的嗜铬细胞对于反射性心肺适应缺氧至关重要。然而,这些细胞检测 O 张力变化的机制还知之甚少。通过比较对 O 敏感的 CB 和 AM 细胞与实际上对 O 不敏感的颈上神经节神经元的转录组,研究了急性 O 感应细胞的代谢特性。在 O 敏感细胞中,我们发现特征性脯氨酰羟化酶 3 下调和低氧诱导因子 2α 上调,以及编码三种非典型线粒体电子传递亚基和丙酮酸羧化酶的基因表达过度,丙酮酸羧化酶是补充三羧酸循环中间产物的酶。与这一观察结果一致,琥珀酸脱氢酶的抑制损害了 CB 对急性 O 的感应。外周化学感受器细胞对急性缺氧的反应性取决于“特征代谢谱”。
急性 O 感应是颈动脉体(CB)中的球细胞等外周化学感受器细胞的基本特性,和肾上腺髓质(AM)中的嗜铬细胞,是适应缺氧所必需的。这些细胞含有 O 敏感的离子通道,在暴露于缺氧时,这些离子通道介导膜去极化和递质释放。然而,细胞检测 O 张力变化的机制仍知之甚少。最近,我们提出 CB 球细胞具有特定的代谢特征,有利于在缺氧期间积累还原醌和产生线粒体 NADH 和活性氧。这些信号改变膜离子通道活性。为了研究急性 O 感应细胞的特征代谢谱,我们使用成年小鼠比较了三种源自共同交感肾上腺祖细胞但对急性缺氧反应性不同的细胞类型的转录组:CB 和 AM 细胞(对 O 敏感(球细胞>嗜铬细胞))和实际上对 O 不敏感的颈上神经节神经元。在 O 敏感细胞中,我们发现了特征性脯氨酰羟化酶 3/低氧诱导因子 2α 的 mRNA 表达模式和几个基因的上调,特别是三种非典型线粒体电子传递亚基和一些离子通道。此外,我们发现丙酮酸羧化酶,三羧酸循环补料的基本酶,在 CB 球细胞中过度表达。我们还观察到,琥珀酸脱氢酶的抑制损害了 CB 对急性 O 的感应。我们的数据表明,对急性缺氧的反应性取决于化学感受器细胞中的“特征代谢谱”。