Suppr超能文献

在线交流中长程相关性和突发活动模式的出现。

Emergence of long-range correlations and bursty activity patterns in online communication.

作者信息

Panzarasa Pietro, Bonaventura Moreno

机构信息

School of Business and Management, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom.

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062821. doi: 10.1103/PhysRevE.92.062821. Epub 2015 Dec 17.

Abstract

Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.

摘要

研究表明,各种社会、经济和技术系统中发生的活动在时间上呈现出长期波动。在短时间内通常会观察到快速发生事件的明显水平,随后是长时间的不活动。然而,相对较少的研究揭示了在不同分析层面上能够检测到非均匀时间过程并从这些层面中出现的程度。在这里,我们研究了一个在线论坛中的人类活动模式,在这个论坛中,可以在三个相互交织的层面上评估交流情况:个体用户的微观层面;讨论组和连续会话的中观层面;以及整个系统的宏观层面。为了揭示不同层面之间的关系,我们对一个过零模型进行了多次数值模拟,在该模型中,用户的行为受到日益丰富和更现实的社会互动规则的约束。结果表明,当用户是唯我主义时,他们的突发行为不足以在更高层面上产生重尾事件间时间分布。然而,当用户具有社会相互依赖性时,在所有分析层面上,模拟论坛和真实论坛的功率谱以及事件间时间分布都非常相似。社会互动负责将微观层面上的多个突发活动聚集为更高层面上出现的突发活动模式。我们讨论了这些发现对于复杂系统中突发行为的涌现论解释的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验