Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.
Phys Rev E. 2018 Aug;98(2-1):022316. doi: 10.1103/PhysRevE.98.022316.
Temporal inhomogeneities observed in various natural and social phenomena have often been characterized in terms of scaling behaviors in the autocorrelation function with a decaying exponent γ, the interevent time distribution with a power-law exponent α, and the burst size distributions. Here the interevent time is defined as a time interval between two consecutive events in the event sequence, and the burst size denotes the number of events in a bursty train detected for a given time window. To understand such temporal scaling behaviors implying a hierarchical temporal structure, we devise a hierarchical burst model by assuming that each observed event might be a consequence of the multilevel causal or decision-making process. By studying our model analytically and numerically, we confirm the scaling relation α+γ=2, established for the uncorrelated interevent times, despite of the existence of correlations between interevent times. Such correlations between interevent times are supported by the stretched exponential burst size distributions, for which we provide an analytic argument. In addition, by imposing conditions for the ordering of events, we observe an additional feature of log-periodic behavior in the autocorrelation function. Our modeling approach for the hierarchical temporal structure can help us better understand the underlying mechanisms behind complex bursty dynamics showing temporal scaling behaviors.
在各种自然和社会现象中观察到的时间不均匀性,通常可以用自相关函数中的标度行为来描述,其衰减指数为 γ,事件间时间分布的幂律指数为 α,以及爆发大小分布。这里的事件间时间定义为事件序列中两个连续事件之间的时间间隔,爆发大小表示在给定时间窗口内检测到的爆发性火车中的事件数量。为了理解这种暗示层次时间结构的时间标度行为,我们通过假设每个观察到的事件可能是多层次因果或决策过程的结果,设计了一个层次爆发模型。通过对我们的模型进行分析和数值研究,我们确认了与无关联事件间时间相关的标度关系 α+γ=2,尽管事件间时间存在相关性。事件间时间的这种相关性得到了扩展指数爆发大小分布的支持,我们为其提供了一个分析论据。此外,通过对事件排序的条件进行限制,我们观察到自相关函数中的对数周期性行为的额外特征。我们用于层次时间结构的建模方法可以帮助我们更好地理解表现出时间标度行为的复杂爆发动态背后的潜在机制。