Budroni M A
Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):063007. doi: 10.1103/PhysRevE.92.063007. Epub 2015 Dec 7.
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.
交叉扩散,即给定物种的通量带动另一种物种的扩散输运,会在初始稳定分层的界面引发浮力驱动的流体动力学不稳定性。从一个简单的三元体系出发,我们引入一个理论框架,对重力场作用下两层分层中交叉扩散诱导的流体动力学现象进行分类。通过将菲克扩散形式与斯托克斯方程耦合,推导了一个交叉扩散对流(CDC)模型。为了分离交叉扩散在双层系统对流失稳中的作用,我们在底层施加一种物种的初始浓度跃变,而另一种物种在空间域上均匀分布。这种初始构型避免了经典瑞利 - 泰勒或微分扩散对流不稳定性的同时出现,还使我们能够选择性地激活交叉扩散反馈,即非均匀分布的物种影响另一种物种的扩散输运。我们确定了两种流体动力学模式[负交叉扩散驱动对流(NCC)和正交叉扩散驱动对流(PCC)],它们对应于这个操作交叉扩散项的符号。通过研究沿重力轴的时空密度分布,我们仅根据两个重要参数得到了对流起始的解析条件:操作交叉扩散率和浮力比,浮力比给出了两种物种对全局密度的相对贡献。NCC和PCC情形在这种参数空间中的一般分类得到了完全非线性CDC问题数值模拟的支持。所得的对流模式与微乳液系统中最近的实验结果吻合良好。