Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom.
Phys Rev Lett. 2015 Dec 31;115(26):267203. doi: 10.1103/PhysRevLett.115.267203. Epub 2015 Dec 23.
We show numerically that the "deconfined" quantum critical point between the Néel antiferromagnet and the columnar valence-bond solid, for a square lattice of spin 1/2, has an emergent SO(5) symmetry. This symmetry allows the Néel vector and the valence-bond solid order parameter to be rotated into each other. It is a remarkable (2+1)-dimensional analogue of the SO(4)=[SU(2)×SU(2)]/Z(2) symmetry that appears in the scaling limit for the spin-1/2 Heisenberg chain. The emergent SO(5) symmetry is strong evidence that the phase transition in the (2+1)-dimensional system is truly continuous, despite the violations of finite-size scaling observed previously in this problem. It also implies surprising relations between correlation functions at the transition. The symmetry enhancement is expected to apply generally to the critical two-component Abelian Higgs model (noncompact CP(1) model). The result indicates that in three dimensions there is an SO(5)-symmetric conformal field theory that has no relevant singlet operators, so is radically different from conventional Wilson-Fisher-type conformal field theories.
我们通过数值计算表明,对于一个自旋为 1/2 的正方形晶格,奈尔反铁磁相与柱状价带固体之间的“去禁闭”量子临界点具有新兴的 SO(5)对称性。这种对称性允许奈尔矢量和价带固体序参量相互旋转。这是一个引人注目的(2+1)-维类比,类似于出现在自旋为 1/2 的海森堡链标度极限中的 SO(4)=[SU(2)×SU(2)]/Z(2)对称性。新兴的 SO(5)对称性有力地证明了(2+1)-维系统中的相变是真正连续的,尽管此前在这个问题中观察到了有限尺寸标度的违反。它还暗示了相变处相关函数之间的惊人关系。预计对称性增强将普遍适用于临界两分量阿贝尔希格斯模型(非紧 CP(1)模型)。该结果表明,在三维空间中存在一个具有新兴 SO(5)对称性的共形场论,其中没有相关的单态算子,因此与传统的威尔逊-费希尔型共形场论有很大的不同。