Suppr超能文献

Regulation of dopamine function in the nucleus accumbens of the rat by the thalamic paraventricular nucleus and adjacent midline nuclei.

作者信息

Jones M W, Kilpatrick I C, Phillipson O T

机构信息

Department of Pharmacology, School of Medical Sciences, Bristol, UK.

出版信息

Exp Brain Res. 1989;76(3):572-80. doi: 10.1007/BF00248914.

Abstract

The effects of unilateral treatments applied to non-dopamine containing output neurones of the thalamic paraventricular nucleus and adjacent midline nuclei (PV-MLT) were observed on dopamine (DA) utilisation of the nucleus accumbens (NAc). The ratios of [metabolite]: [parent amine] were used as indices of DA utilisation. In general, these indices were observed to increase in NAc in a bilaterally symmetrical fashion immediately after infusion of low doses (5 microM) of a cell-selective chemical excitant (quisqualic acid, QUIS) into either rostral or caudal PV-MLT. Moreover, the increases appeared to be entirely due to changes in the tissue content of metabolite. Electrical stimulation of caudal PV-MLT also enhanced DA utilisation ratios in NAc but appeared to do so by decreasing the tissue content of DA itself. Attempts to lesion caudal PV-MLT neurones by infusion of a higher dose of QUIS (50 mM) followed by long-term recovery (7 days) produced ratios of DA utilisation in NAc that were no different from those of controls. DA utilisation ratios in NAc were no different from control values immediately after infusion into caudal PV-MLT of an 'intermediate' dose (10 mM) of another chemical excitant (N-methyl-D-aspartic acid, NMDA). Since DA utilisation ratios in this area were also unaffected by histologically verifiable lesions of caudal PV-MLT neurones produced 7 days after infusion of high doses (100 mM) of NMDA it is argued that the former treatment may lead to an acute firing inactivation of PV-MLT neurones.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验