Wang Guoqing, Akiyama Yoshitsugu, Takarada Tohru, Maeda Mizuo
Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658.
Current address: Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamambe-cho, Yamakoshi-gun, Hokkaido 049-3514 (Japan).
Chemistry. 2016 Jan 4;22(1):258-63. doi: 10.1002/chem.201503834. Epub 2015 Nov 24.
Gold nanoparticles modified with DNA duplexes are rapidly and spontaneously aggregated at high ionic strength. In contrast, this aggregation is greatly suppressed when the DNA duplex has a single-base mismatch or a single-nucleotide overhang located at the outermost surface of the particle. These colloidal features emerge irrespective of the size and composition of the particle core; however, the effects of the shape remain unexplored. Using gold nanorods and nanotriangles (nanoplatelets), we show herein that both remarkable rapidity in colloidal aggregation and extreme susceptibility to DNA structural perturbations are preserved, regardless of the shape and aspect ratio of the core. It is also demonstrated that the DNA-modified gold nanorods and nanotriangles are applicable to naked-eye detection of a single-base difference in a gene model. The current study corroborates the generality of the unique colloidal properties of DNA-functionalized nanoparticles, and thus enhances the feasibility of their practical use.
用DNA双链修饰的金纳米颗粒在高离子强度下会迅速自发聚集。相比之下,当DNA双链在颗粒的最外表面存在单碱基错配或单核苷酸突出端时,这种聚集会受到极大抑制。这些胶体特性的出现与颗粒核心的大小和组成无关;然而,形状的影响仍未得到探索。本文中,我们使用金纳米棒和纳米三角形(纳米片)表明,无论核心的形状和纵横比如何,胶体聚集的显著快速性和对DNA结构扰动的极端敏感性都得以保留。还证明了DNA修饰的金纳米棒和纳米三角形可用于基因模型中单碱基差异的肉眼检测。当前的研究证实了DNA功能化纳米颗粒独特胶体性质的普遍性,从而提高了其实际应用的可行性。