Lee Taehun, MacCallum Robert
a University of North Carolina at Chapel Hill .
Multivariate Behav Res. 2008 Oct-Dec;43(4):656-7. doi: 10.1080/00273170802640491.
In applications of SEM, investigators obtain and interpret parameter estimates that are computed so as to produce optimal model fit in the sense that the obtained model fit would deteriorate to some degree if any of those estimates were changed. This property raises a question: to what extent would model fit deteriorate if parameter estimates were changed? And which parameters have the greatest influence on model fit? This is the idea of parameter influence. The present paper will cover two approaches to quantifying parameter influence. Both are based on the principle of likelihood displacement (LD), which quantifies influence as the discrepancy between the likelihood under the original model and the likelihood under the model in which a minor perturbation is imposed ( Cook, 1986 ). One existing approach for quantifying parameter influence is a vector approach ( Lee & Wang, 1996 ) that determines a vector in the parameter space such that altering parameter values simultaneously in this direction will cause maximum change in LD. We propose a new approach, called influence mapping for single parameters, that determines the change in model fit under perturbation of a single parameter holding other parameter estimates constant. An influential parameter is defined as one that produces large change in model fit under minor perturbation. Figure 1 illustrates results from this procedure for three different parameters in an empirical application. Flatter curves represent less influential parameters. Practical implications of the results are discussed. The relationship with statistical power in structural equation models is also discussed.[Figure: see text].
在结构方程模型(SEM)的应用中,研究者获取并解释参数估计值,这些估计值是通过计算得出的,目的是产生最优的模型拟合,即如果改变其中任何一个估计值,所得到的模型拟合会在一定程度上变差。这一特性引发了一个问题:如果改变参数估计值,模型拟合会在多大程度上变差?以及哪些参数对模型拟合的影响最大?这就是参数影响的概念。本文将介绍两种量化参数影响的方法。这两种方法都基于似然位移(LD)原理,该原理将影响量化为原始模型下的似然与施加微小扰动后的模型下的似然之间的差异(库克,1986年)。一种现有的量化参数影响的方法是向量法(李和王,1996年),该方法在参数空间中确定一个向量,使得沿此方向同时改变参数值会导致似然位移的最大变化。我们提出了一种新方法,称为单参数影响映射,它在保持其他参数估计值不变的情况下,确定单个参数受扰动时模型拟合的变化。一个有影响的参数被定义为在微小扰动下会使模型拟合产生较大变化的参数。图1展示了在一个实证应用中针对三个不同参数进行此过程的结果。较平缓的曲线表示影响较小的参数。文中讨论了这些结果的实际意义。还讨论了与结构方程模型中统计功效的关系。[图:见正文]