Olsson U H, Troye S V, Howell R D
Multivariate Behav Res. 1999 Jan 1;34(1):31-58. doi: 10.1207/s15327906mbr3401_2.
In research the goal is often to construct models that reflect the structures and parameters of some unobservable causal mechanism. The degree of isomorphis between such a theoretic model and a "true" model can be labeled "theoretic fit." In the absence of direct evidence that the researcher's theoretic model accurately reflects the true model, indices of "empirical fit" (Chi-Square, etc.) are used as indirect evidence of versimilitude. The issue addressed here is: Is empirical fit necessarily a good indicator of theoretic fit? This study uses simulation to compare the ability of Maximum Likelihood (ML) and Generalized Least Squares (GLS) estimation to provide theoretic fit in models that are parsimonious representations of a true model. We find that empirical fit using GLS was actually superior to that obtained when parameters in the incomplete model were constrained to the true values of the generating model. However, this apparent goodness of fit of GLS is obtained through greater distortion of the parameter estimates. In short, better empirical fit obtained for GLS, compared with ML, was obtained at the cost of lower theoretic fit.
在研究中,目标通常是构建反映某些不可观测因果机制的结构和参数的模型。这种理论模型与“真实”模型之间的同构程度可称为“理论拟合度”。在缺乏直接证据表明研究者的理论模型准确反映真实模型的情况下,“实证拟合度”指标(如卡方等)被用作似真性的间接证据。这里要解决的问题是:实证拟合度必然是理论拟合度的良好指标吗?本研究使用模拟来比较最大似然(ML)估计和广义最小二乘(GLS)估计在作为真实模型简约表示的模型中提供理论拟合度的能力。我们发现,使用GLS的实证拟合度实际上优于将不完全模型中的参数约束为生成模型的真实值时获得的拟合度。然而,GLS这种明显良好的拟合度是通过参数估计的更大扭曲获得的。简而言之,与ML相比,GLS获得的更好的实证拟合度是以更低的理论拟合度为代价的。