Suppr超能文献

一种依赖NMDA受体的机制是抑制性突触发育的基础。

An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.

作者信息

Gu Xinglong, Zhou Liang, Lu Wei

机构信息

Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, MD 20892, USA.

Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 3C1000, Bethesda, MD 20892, USA.

出版信息

Cell Rep. 2016 Jan 26;14(3):471-478. doi: 10.1016/j.celrep.2015.12.061. Epub 2016 Jan 7.

Abstract

In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

摘要

在哺乳动物大脑中,γ-氨基丁酸(GABA)能突触传递为谷氨酸能兴奋性驱动提供抑制平衡,并控制神经元输出。GABA能突触发育的分子机制在很大程度上仍不清楚。在此,我们报告单个未成熟神经元中的N-甲基-D-天冬氨酸(NMDA)型离子otropic谷氨酸受体(NMDARs)是GABA能突触发育所必需的上游信号分子,这需要通过NMDAR GluN1亚基C0结构域中的钙调蛋白结合基序进行信号传导。有趣的是,在缺乏NMDARs的神经元中,虽然GABA能突触传递显著减少,但由突触外GABAA受体介导的强直抑制增加,这表明存在一种针对突触抑制缺失的补偿机制。这些结果证明了NMDARs在确定抑制性突触发育中的关键作用,并提示了一种控制发育中大脑突触兴奋与抑制平衡建立的重要机制。

相似文献

1
An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.
Cell Rep. 2016 Jan 26;14(3):471-478. doi: 10.1016/j.celrep.2015.12.061. Epub 2016 Jan 7.
2
NMDA receptors in GABAergic synapses during postnatal development.
PLoS One. 2012;7(5):e37753. doi: 10.1371/journal.pone.0037753. Epub 2012 May 25.
4
High Salt Intake Recruits Tonic Activation of NR2D Subunit-Containing Extrasynaptic NMDARs in Vasopressin Neurons.
J Neurosci. 2021 Feb 10;41(6):1145-1156. doi: 10.1523/JNEUROSCI.1742-20.2020. Epub 2020 Dec 10.
7
Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons.
J Neurosci. 2012 Mar 21;32(12):3992-4003. doi: 10.1523/JNEUROSCI.4129-11.2012.
10
Nitric Oxide Signaling Strengthens Inhibitory Synapses of Cerebellar Molecular Layer Interneurons through a GABARAP-Dependent Mechanism.
J Neurosci. 2020 Apr 22;40(17):3348-3359. doi: 10.1523/JNEUROSCI.2211-19.2020. Epub 2020 Mar 13.

引用本文的文献

1
Dose-Dependent Modulation of NMDA Receptors: Neuroprotective Mechanisms against Oxidative Stress in Hippocampal Neurons.
Int J Mol Cell Med. 2025 Jul 1;14(2):682-693. doi: 10.22088/IJMCM.BUMS.14.2.682. eCollection 2025.
2
Activity-dependent development of synaptic circuits mediates direction selectivity in an axis-specific manner.
Cell Rep. 2025 Jul 22;44(7):115897. doi: 10.1016/j.celrep.2025.115897. Epub 2025 Jun 24.
3
Calcium- and calmodulin-dependent inhibition of NMDA receptor currents.
Biophys J. 2024 Feb 6;123(3):277-293. doi: 10.1016/j.bpj.2023.12.018. Epub 2023 Dec 22.
4
NR1 Splicing Variant NR1a in Cerebellar Granule Neurons Constitutes a Better Motor Learning in the Mouse.
Cerebellum. 2024 Jun;23(3):1112-1120. doi: 10.1007/s12311-023-01614-5. Epub 2023 Oct 25.
5
GluN2A mediates ketamine-induced rapid antidepressant-like responses.
Nat Neurosci. 2023 Oct;26(10):1751-1761. doi: 10.1038/s41593-023-01436-y. Epub 2023 Sep 14.
6
The role of NMDARs in the anesthetic and antidepressant effects of ketamine.
CNS Neurosci Ther. 2024 Apr;30(4):e14464. doi: 10.1111/cns.14464. Epub 2023 Sep 7.
7
GSK-3β orchestrates the inhibitory innervation of adult-born dentate granule cells in vivo.
Cell Mol Life Sci. 2023 Jul 23;80(8):225. doi: 10.1007/s00018-023-04874-w.
8
Efavirenz restored NMDA receptor dysfunction and inhibited epileptic seizures in mutant mice.
Front Neurosci. 2023 Mar 2;17:1086462. doi: 10.3389/fnins.2023.1086462. eCollection 2023.
10
NMDAR-dependent presynaptic homeostasis in adult hippocampus: Synapse growth and cross-modal inhibitory plasticity.
Neuron. 2022 Oct 19;110(20):3302-3317.e7. doi: 10.1016/j.neuron.2022.08.014. Epub 2022 Sep 6.

本文引用的文献

1
Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):E65-72. doi: 10.1073/pnas.1411170112. Epub 2014 Dec 22.
3
The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition.
Nature. 2013 Nov 7;503(7474):121-5. doi: 10.1038/nature12743.
5
The class 4 semaphorin Sema4D promotes the rapid assembly of GABAergic synapses in rodent hippocampus.
J Neurosci. 2013 May 22;33(21):8961-73. doi: 10.1523/JNEUROSCI.0989-13.2013.
7
Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4057-62. doi: 10.1073/pnas.1209881110. Epub 2013 Jan 23.
8
NMDA receptors in GABAergic synapses during postnatal development.
PLoS One. 2012;7(5):e37753. doi: 10.1371/journal.pone.0037753. Epub 2012 May 25.
9
Selective control of inhibitory synapse development by Slitrk3-PTPδ trans-synaptic interaction.
Nat Neurosci. 2012 Jan 29;15(3):389-98, S1-2. doi: 10.1038/nn.3040.
10
Structural basis for activation of calcineurin by calmodulin.
J Mol Biol. 2012 Jan 13;415(2):307-17. doi: 10.1016/j.jmb.2011.11.008. Epub 2011 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验