Minoura Itsushi, Takazaki Hiroko, Ayukawa Rie, Saruta Chihiro, Hachikubo You, Uchimura Seiichi, Hida Tomonobu, Kamiguchi Hiroyuki, Shimogori Tomomi, Muto Etsuko
Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Nat Commun. 2016 Jan 18;7:10058. doi: 10.1038/ncomms10058.
Mutations in human β3-tubulin (TUBB3) cause an ocular motility disorder termed congenital fibrosis of the extraocular muscles type 3 (CFEOM3). In CFEOM3, the oculomotor nervous system develops abnormally due to impaired axon guidance and maintenance; however, the underlying mechanism linking TUBB3 mutations to axonal growth defects remains unclear. Here, we investigate microtubule (MT)-based motility in vitro using MTs formed with recombinant TUBB3. We find that the disease-associated TUBB3 mutations R262H and R262A impair the motility and ATPase activity of the kinesin motor. Engineering a mutation in the L12 loop of kinesin surprisingly restores a normal level of motility and ATPase activity on MTs carrying the R262A mutation. Moreover, in a CFEOM3 mouse model expressing the same mutation, overexpressing the suppressor mutant kinesin restores axonal growth in vivo. Collectively, these findings establish the critical role of the TUBB3-R262 residue for mediating kinesin interaction, which in turn is required for normal axonal growth and brain development.
人类β3微管蛋白(TUBB3)的突变会导致一种眼部运动障碍,称为3型先天性眼外肌纤维化(CFEOM3)。在CFEOM3中,动眼神经系统因轴突导向和维持受损而发育异常;然而,将TUBB3突变与轴突生长缺陷联系起来的潜在机制仍不清楚。在这里,我们使用重组TUBB3形成的微管在体外研究基于微管(MT)的运动性。我们发现与疾病相关的TUBB3突变R262H和R262A损害了驱动蛋白的运动性和ATP酶活性。令人惊讶的是,在驱动蛋白的L12环中设计一个突变可恢复携带R262A突变的微管上正常水平的运动性和ATP酶活性。此外,在表达相同突变的CFEOM3小鼠模型中,过表达抑制突变型驱动蛋白可恢复体内轴突生长。总的来说,这些发现确立了TUBB3-R262残基在介导驱动蛋白相互作用中的关键作用,而这反过来又是正常轴突生长和大脑发育所必需的。