Suppr超能文献

通过改造驱动蛋白-微管界面逆转眼外肌纤维化模型中的轴突生长缺陷

Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface.

作者信息

Minoura Itsushi, Takazaki Hiroko, Ayukawa Rie, Saruta Chihiro, Hachikubo You, Uchimura Seiichi, Hida Tomonobu, Kamiguchi Hiroyuki, Shimogori Tomomi, Muto Etsuko

机构信息

Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

出版信息

Nat Commun. 2016 Jan 18;7:10058. doi: 10.1038/ncomms10058.

Abstract

Mutations in human β3-tubulin (TUBB3) cause an ocular motility disorder termed congenital fibrosis of the extraocular muscles type 3 (CFEOM3). In CFEOM3, the oculomotor nervous system develops abnormally due to impaired axon guidance and maintenance; however, the underlying mechanism linking TUBB3 mutations to axonal growth defects remains unclear. Here, we investigate microtubule (MT)-based motility in vitro using MTs formed with recombinant TUBB3. We find that the disease-associated TUBB3 mutations R262H and R262A impair the motility and ATPase activity of the kinesin motor. Engineering a mutation in the L12 loop of kinesin surprisingly restores a normal level of motility and ATPase activity on MTs carrying the R262A mutation. Moreover, in a CFEOM3 mouse model expressing the same mutation, overexpressing the suppressor mutant kinesin restores axonal growth in vivo. Collectively, these findings establish the critical role of the TUBB3-R262 residue for mediating kinesin interaction, which in turn is required for normal axonal growth and brain development.

摘要

人类β3微管蛋白(TUBB3)的突变会导致一种眼部运动障碍,称为3型先天性眼外肌纤维化(CFEOM3)。在CFEOM3中,动眼神经系统因轴突导向和维持受损而发育异常;然而,将TUBB3突变与轴突生长缺陷联系起来的潜在机制仍不清楚。在这里,我们使用重组TUBB3形成的微管在体外研究基于微管(MT)的运动性。我们发现与疾病相关的TUBB3突变R262H和R262A损害了驱动蛋白的运动性和ATP酶活性。令人惊讶的是,在驱动蛋白的L12环中设计一个突变可恢复携带R262A突变的微管上正常水平的运动性和ATP酶活性。此外,在表达相同突变的CFEOM3小鼠模型中,过表达抑制突变型驱动蛋白可恢复体内轴突生长。总的来说,这些发现确立了TUBB3-R262残基在介导驱动蛋白相互作用中的关键作用,而这反过来又是正常轴突生长和大脑发育所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/916e/4735607/0ab84efae120/ncomms10058-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验