Correia Rion Brattig, Li Lang, Rocha Luis M
School of Informatics & Computing, Indiana University, Bloomington, IN 47408, USA2CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil.
Pac Symp Biocomput. 2016;21:492-503.
Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram contains much drug- and pathology specific data for public health monitoring of DDI and ADR, and that complex network analysis provides an important toolbox to extract health-related associations and their support from large-scale social media data.
近期许多研究旨在从生物医学科学文献中识别药物相互作用(DDI)和药物不良反应(ADR)的证据。除了这个“文献组”,社交媒体领域提供了一个非常有前景的大规模数据来源,能够以前所未有的方式帮助识别DDI和ADR。鉴于用户数量众多,分析社交媒体数据可能有助于识别与DDI相关的报告不足的人群层面的病理情况,从而进一步促进人群健康的改善。此外,利用这些数据使我们能够推断药物与天然产物(包括大麻)的相互作用,而生物医学研究迄今对这一系列的DDI探索甚少。我们的目标是确定Instagram在DDI、ADR及总体行为病理学的公共卫生监测和监督方面的潜力。大多数社交媒体分析聚焦于推特和脸书,但Instagram是一个日益重要的平台,尤其是在青少年中,其公开帖子可不受限制地访问,带有地理位置坐标的帖子以及用于补充文本分析的图像的可用性很高。我们使用药物、症状和天然产物词典来识别各类DDI和ADR证据,收集了从2010年10月到2015年6月近7000条用户时间线。我们报告了:1)一种监测工具的开发,用于轻松观察与感兴趣的药物和症状术语相关的用户层面时间线;2)通过分析从用户时间线按三种不同规模(每月、每周和每日出现情况)计算出的共现网络来了解人群层面的行为。对这些网络的分析进一步揭示了:3)在用户时间线中有更多支持的药物和症状的直接和间接关联,以及4)由观察到的人群的集体行为揭示的症状和药物集群。这表明Instagram包含大量用于DDI和ADR公共卫生监测的特定于药物和病理学的数据,并且复杂网络分析提供了一个重要的工具箱,用于从大规模社交媒体数据中提取与健康相关的关联及其支持证据。