Suppr超能文献

机器学习辅助饮食成功预测的见解

INSIGHTS FROM MACHINE-LEARNED DIET SUCCESS PREDICTION.

作者信息

Weber Ingmar, Achananuparp Palakorn

机构信息

Qatar Computing Research Institute, Doha, Qatar,

出版信息

Pac Symp Biocomput. 2016;21:540-51.

Abstract

To support people trying to lose weight and stay healthy, more and more fitness apps have sprung up including the ability to track both calories intake and expenditure. Users of such apps are part of a wider "quantified self" movement and many opt-in to publicly share their logged data. In this paper, we use public food diaries of more than 4,000 long-term active MyFitnessPal users to study the characteristics of a (un-)successful diet. Concretely, we train a machine learning model to predict repeatedly being over or under self-set daily calories goals and then look at which features contribute to the model's prediction. Our findings include both expected results, such as the token "mcdonalds" or the category "dessert" being indicative for being over the calories goal, but also less obvious ones such as the difference between pork and poultry concerning dieting success, or the use of the "quick added calories" functionality being indicative of over-shooting calorie-wise. This study also hints at the feasibility of using such data for more in-depth data mining, e.g., looking at the interaction between consumed foods such as mixing protein- and carbohydrate-rich foods. To the best of our knowledge, this is the first systematic study of public food diaries.

摘要

为了帮助人们减肥并保持健康,越来越多的健身应用程序涌现出来,其中包括追踪卡路里摄入和消耗的功能。这类应用程序的用户是更广泛的“自我量化”运动的一部分,许多人选择公开分享他们记录的数据。在本文中,我们使用了4000多名长期活跃的MyFitnessPal用户的公开饮食日记,来研究成功(或不成功)节食的特点。具体来说,我们训练了一个机器学习模型,以预测是否反复超过或低于自我设定的每日卡路里目标,然后查看哪些特征对模型的预测有贡献。我们的发现既有预期的结果,比如“麦当劳”这个词或“甜点”类别表明超过了卡路里目标,也有不太明显的结果,比如猪肉和家禽在节食成功方面的差异,或者使用“快速添加卡路里”功能表明在卡路里方面超标。这项研究还暗示了利用此类数据进行更深入数据挖掘的可行性,例如研究摄入食物之间的相互作用,如富含蛋白质和碳水化合物的食物混合食用的情况。据我们所知,这是对公开饮食日记的首次系统研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验