Suppr超能文献

挖掘社交媒体数据中的生物医学信号及与健康相关的行为。

Mining Social Media Data for Biomedical Signals and Health-Related Behavior.

作者信息

Correia Rion Brattig, Wood Ian B, Bollen Johan, Rocha Luis M

机构信息

Instituto Gulbenkian de Cincia, 2780-156 Oeiras, Portugal.

Center for Social and Biomedical Complexity, Luddy School of Informatics, Computing & Engineering, Indiana University, Bloomington, Indiana 47408, USA.

出版信息

Annu Rev Biomed Data Sci. 2020 Jul;3:433-458. doi: 10.1146/annurev-biodatasci-030320-040844. Epub 2020 May 4.

Abstract

Social media data have been increasingly used to study biomedical and health-related phenomena. From cohort-level discussions of a condition to population-level analyses of sentiment, social media have provided scientists with unprecedented amounts of data to study human behavior associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance and sentiment analysis, especially for mental health. We also discuss a variety of innovative uses of social media data for health-related applications as well as important limitations of social media data access and use.

摘要

社交媒体数据越来越多地被用于研究生物医学和健康相关现象。从对某种疾病的队列层面讨论到对情绪的人群层面分析,社交媒体为科学家提供了前所未有的大量数据,用于研究与各种健康状况和医学治疗相关的人类行为。在此,我们回顾了近期在挖掘社交媒体以获取与人类健康的多层次复杂性相关的生物医学、流行病学和社会现象信息方面的工作。我们特别关注社交媒体数据分析取得最大进展的主题,包括药物警戒和情绪分析,尤其是针对心理健康方面的。我们还讨论了社交媒体数据在健康相关应用中的各种创新用途以及社交媒体数据获取和使用的重要局限性。

相似文献

1
Mining Social Media Data for Biomedical Signals and Health-Related Behavior.挖掘社交媒体数据中的生物医学信号及与健康相关的行为。
Annu Rev Biomed Data Sci. 2020 Jul;3:433-458. doi: 10.1146/annurev-biodatasci-030320-040844. Epub 2020 May 4.

引用本文的文献

1
Which social media platforms facilitate monitoring the opioid crisis?哪些社交媒体平台有助于监测阿片类药物危机?
PLOS Digit Health. 2025 Apr 28;4(4):e0000842. doi: 10.1371/journal.pdig.0000842. eCollection 2025 Apr.
2
Quantifying the impact of biobanks and cohort studies.量化生物样本库和队列研究的影响。
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2427157122. doi: 10.1073/pnas.2427157122. Epub 2025 Apr 16.
9
The distance backbone of complex networks.复杂网络的距离主干
J Complex Netw. 2021 Dec;9(6). doi: 10.1093/comnet/cnab021. Epub 2021 Oct 20.

本文引用的文献

5
RedMed: Extending drug lexicons for social media applications.红医:扩展社交媒体应用中的药物词汇。
J Biomed Inform. 2019 Nov;99:103307. doi: 10.1016/j.jbi.2019.103307. Epub 2019 Oct 15.
6
9
Information flow reveals prediction limits in online social activity.信息流揭示了在线社交活动中的预测极限。
Nat Hum Behav. 2019 Feb;3(2):122-128. doi: 10.1038/s41562-018-0510-5. Epub 2019 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验