Suppr超能文献

人工智能在促进成人减肥方面的潜力:范围综述。

The potential of artificial intelligence in enhancing adult weight loss: a scoping review.

机构信息

Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore.

出版信息

Public Health Nutr. 2021 Jun;24(8):1993-2020. doi: 10.1017/S1368980021000598. Epub 2021 Feb 17.

Abstract

OBJECTIVE

To present an overview of how artificial intelligence (AI) could be used to regulate eating and dietary behaviours, exercise behaviours and weight loss.

DESIGN

A scoping review of global literature published from inception to 15 December 2020 was conducted according to Arksey and O'Malley's five-step framework. Eight databases (CINAHL, Cochrane-Central, Embase, IEEE Xplore, PsycINFO, PubMed, Scopus and Web of Science) were searched. Included studies were independently screened for eligibility by two reviewers with good interrater reliability (k = 0·96).

RESULTS

Sixty-six out of 5573 potential studies were included, representing more than 2031 participants. Three tenets of self-regulation were identified - self-monitoring (n 66, 100 %), optimisation of goal setting (n 10, 15·2 %) and self-control (n 10, 15·2 %). Articles were also categorised into three AI applications, namely machine perception (n 50), predictive analytics only (n 6) and real-time analytics with personalised micro-interventions (n 10). Machine perception focused on recognising food items, eating behaviours, physical activities and estimating energy balance. Predictive analytics focused on predicting weight loss, intervention adherence, dietary lapses and emotional eating. Studies on the last theme focused on evaluating AI-assisted weight management interventions that instantaneously collected behavioural data, optimised prediction models for behavioural lapse events and enhance behavioural self-control through adaptive and personalised nudges/prompts. Only six studies reported average weight losses (2·4-4·7 %) of which two were statistically significant.

CONCLUSION

The use of AI for weight loss is still undeveloped. Based on the current study findings, we proposed a framework on the applicability of AI for weight loss but cautioned its contingency upon engagement and contextualisation.

摘要

目的

概述人工智能(AI)在调节饮食行为、运动行为和减肥方面的应用。

设计

根据 Arksey 和 O'Malley 的五步框架,对截至 2020 年 12 月 15 日全球文献进行了范围综述。检索了 8 个数据库(CINAHL、Cochrane-Central、Embase、IEEE Xplore、PsycINFO、PubMed、Scopus 和 Web of Science)。由两名具有良好组内一致性(k = 0.96)的评审员独立筛选符合纳入标准的研究。

结果

在 5573 项潜在研究中,有 66 项研究(代表 2031 多名参与者)符合纳入标准。确定了自我调节的三个原则——自我监测(n = 66,100%)、目标设定的优化(n = 10,15.2%)和自我控制(n = 10,15.2%)。文章还分为三种 AI 应用,即机器感知(n = 50)、仅预测分析(n = 6)和实时分析与个性化微干预(n = 10)。机器感知侧重于识别食物、饮食行为、体育活动和估计能量平衡。预测分析侧重于预测体重减轻、干预依从性、饮食失误和情绪性进食。最后一个主题的研究侧重于评估即时收集行为数据、优化行为失误事件预测模型以及通过自适应和个性化提示增强行为自我控制的 AI 辅助体重管理干预措施。只有 6 项研究报告了平均减重(2.4-4.7%),其中 2 项有统计学意义。

结论

AI 在减肥方面的应用仍未得到充分开发。基于本研究结果,我们提出了一个 AI 应用于减肥的适用性框架,但同时提醒要注意其参与度和情境化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eda/8145469/5ffed55bf890/S1368980021000598_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验